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Abstract 

Background 

Advances in modern high-throughput techniques of molecular biology have enabled top-
down approaches for the estimation of parameter values in metabolic systems, based on time 
series data. Special among them is the recent method of dynamic flux estimation (DFE), 
which uses such data not only for parameter estimation but also for the identification of 
functional forms of the processes governing a metabolic system. DFE furthermore provides 
diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond 
residual errors. Unfortunately, DFE works only when the data are more or less complete and 
the system contains as many independent fluxes as metabolites. These drawbacks may be 
ameliorated with other types of estimation and information. However, such supplementations 
incur their own limitations. In particular, assumptions must be made regarding the functional 
forms of some processes and detailed kinetic information must be available, in addition to the 
time series data. 

Results 

The authors propose here a systematic approach that supplements DFE and overcomes some 
of its shortcomings. Like DFE, the approach is model-free and requires only minimal 
assumptions. If sufficient time series data are available, the approach allows the 
determination of a subset of fluxes that enables the subsequent applicability of DFE to the 
rest of the flux system. The authors demonstrate the procedure with three artificial pathway 
systems exhibiting distinct characteristics and with actual data of the trehalose pathway in 
Saccharomyces cerevisiae. 

Conclusions 

The results demonstrate that the proposed method successfully complements DFE under 
various situations and without a priori assumptions regarding the model representation. The 
proposed method also permits an examination of whether at all, to what degree, or within 
what range the available time series data can be validly represented in a particular functional 
format of a flux within a pathway system. Based on these results, further experiments may be 



designed to generate data points that genuinely add new information to the structure 
identification and parameter estimation tasks at hand. 
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Background 
A grand challenge of biomathematical modeling is the conversion of a biological system into 
a computational structure that formalizes the underlying system. An important and very 
challenging component of this process is the estimation of parameter values. The task is 
typically pursued with one of two generic approaches, namely a forward (bottom-up) or an 
inverse (top-down) method. Until recently, essentially all models of metabolic pathway 
systems were developed according to the first strategy, that is, by characterizing model 
components and processes one at a time and subsequently merging all “local” information 
about kinetic reaction steps into one comprehensive dynamic model. Although this forward 
approach is theoretically straightforward, implementation procedures often fail and, 
moreover, have intrinsic disadvantages [1]. For instance, the necessary information is usually 
obtained in vitro and from different experiments, so that there is no guarantee that it is 
entirely compatible and consistent. 

The second, top-down approach uses data that characterize the entire system and attempts to 
estimate all parameter values at once with a sophisticated optimization algorithm. 
Specifically, this type of method employs time series data that describe the full dynamic 
response of a pathway system to some stimulus, such as an environmental stress (e.g., heat 
shock) or the availability of food (e.g., glucose uptake). In contrast to the local data obtained 
from traditional experiments, the great appeal of using these types of “global” data is that 
most, if not all, measurements are taken from the same biological system under the same 
conditions. Furthermore, these data contain enormous and essentially unadulterated 
information about the structure, dynamics and regulatory mechanisms that govern the 
biological system under investigation. The main drawback of top-down approaches is that the 
actual extraction and integration of this information into fully functional, explanatory models 
is challenging. In fact, more than one hundred articles addressing this task appeared within 
the past ten years. They focused on various aspects of the estimation process, but most of 
them were dedicated to the main issue of optimizing parameter values against the observed 
time series data (e.g., [2,3]). 

Whether a forward or inverse approach is used, the estimation of parameter values 
necessitates assumptions regarding the functions or rate laws that describe the reactions of 
interest. As a prominent example, the typical default for enzymatic reactions in a metabolic 
pathway is the Michaelis-Menten rate law (MMRL) or one of its variations. While such 
assumptions are understandable, they create an immediate conundrum. Namely, the true 
mechanisms governing a biological process are in reality unknown or at least unclear. As a 
result, the estimation process is from the start unguided, uncertain, or maybe even based on 
modestly or entirely wrong assumptions. Also, descriptions of more complex enzyme 
mechanisms contain numerous parameters if several substrates or reactions are involved, so 
that the alleged functions cannot be identified from the typically sparse data [4,5]. 



In addition to the troublesome issue of model selection, most proposed methods for 
estimation from time series data face significant problems related to the data themselves, to 
inefficient algorithms, and to a variety of computational issues. To complicate matters 
further, these issues are usually superimposed. The data may be overly noisy, incomplete, 
collinear with each other, or non-informative. The computational algorithms are often slow to 
converge, converge to a locally but not globally optimal solution, or do not converge at all. 
Finally, there is a mathematical issue, especially for systems with many parameters, namely 
that a system may admit solutions that are distinctly different yet equivalent, or essentially 
equivalent, with respect to the residual error. This type of result, referred to as sloppiness and 
unidentifiability, may be due to redundancies in candidate parameter sets and has received 
much attention in recent times [6-8]. 

A different type of sloppiness may be caused by the fact that different model structures may 
give essentially identical residual errors. For instance, several probability density functions 
often model the same data equally well [9]. Moreover, two “wrong” structures or 
representations within a model may permit compensation of errors between different terms or 
equations [10]. It is not even clear whether the residual error (SSE) is always the best metric 
for the quality of fit [11]. For instance, the “best” models in terms of having the smallest SSE 
tend to have too many parameters and therefore encounter over-fitting problems. This issue 
can be serious, because an over-fitted model often lacks the capacity of extrapolation and 
predictive power with respect to data not used in the estimation or untested conditions. 
Therefore, it is necessary to develop tools for the evaluation of model validity and quality 
beyond residual errors. For instance, one should establish criteria to determine the 
appropriateness of the chosen mathematical representations, develop methods for assessing 
whether residual errors are due to idiosyncrasies or noise in the data, and develop diagnostic 
tools of discriminating between valid and invalid model structures. 

Recently we proposed a novel approach to metabolic systems estimation, called Dynamic 
Flux Estimation (DFE), that ameliorates several of the issues listed above [10]. DFE is 
executed in two distinct phases. The first phase consists of an entirely model-free data 
analysis that requires minimal assumptions and reveals inconsistencies within the data, and 
between data and the alleged system topology. Generally, the system is represented as a set of 
ordinary differential equations (ODEs) so that the instant change in each metabolite (i.e., its 
derivative) equals the sum of fluxes that enter or leave the metabolite pool: 

 .i
i

dX X Influxes Effluxes
dt

X  .fluxes EffluxesiiX i Inf
  

The left-hand side of this ODE can be interpreted as the slope of the time course of the 
variable Xi at a given point in time. Therefore, assuming that the time series data are more or 
less complete and smooth—or can be validly smoothed (see later) —one can estimate the 
slope of the time course at each time point and substitute the slopes for the derivatives. If the 
system contains N equations, and if data are measured at K time points, this substitution 
decouples the system of N differential equations into N sets of K algebraic equations each. 
This system is linear in the fluxes and can be assessed with methods of linear algebra. In 
particular, it is easily solved at each time point if the system has full rank. 

The result of this first phase of DFE is a representation of each flux as a numerically 
characterized function of time and as a function of all contributing metabolites. This 



representation is not explicit, but purely numerical and consists of points in plots of flux vs. 
time or flux vs. metabolites and modulators. The second phase of DFE addresses the 
mathematical formulation of each process in the biological system by attempting to convert 
these numerical plots into mathematical representations, such as a Michaelis-Menten or Hill 
rate law or a power-law description. In contrast to most other methods, where a functional 
form had to be assumed a priori, this step allows quantitative diagnostics of whether a 
candidate of a mathematical formulation may be appropriate, at least within certain ranges of 
the contributing variables. The subsequent determination of parameter values is now much 
easier, because it involves explicit functions that are addressed one flux at a time. 

DFE offers substantial advantages. It makes almost no assumptions and is straightforward if 
the right data are available. It reveals inconsistencies within the data, avoids compensation 
among and within equations, and permits quantitative diagnostic tools of whether the 
assumed mathematical formulations are appropriate or in need of improvement. In addition, 
since DFE identifies parameters based on explicit single-flux representations, the estimation 
of parameter values is much easier and more reliable than in other top-down approaches. As a 
result, DFE promises significantly improved extrapolation capacity toward new data or 
experimental conditions. 

Alas, DFE also has limitations and drawbacks. First, it requires more or less complete time 
series data that characterize the investigated system. These data are still relatively seldom, 
although they are being generated at an increasing rate and with rapidly improving quality. 
Second, and arguably more limiting, a unique solution of the flux equations in the first phase 
of DFE is only possible if the flux system is of full rank. However, most actually pathway 
systems contain more fluxes than metabolites and are therefore underdetermined. 

Several constraint-based optimization techniques have been proposed for stoichiometric 
analyses of underdetermined metabolic systems [12]. They have become a mainstay of flux 
balance analysis (FBA [13]) and work well under steady-state and pseudo-steady-state (PSS) 
assumptions [14-17]. Mahadevan and co-workers [18] extended the traditional FBA to 
account for dynamics and presented two different formulations: the dynamic optimization 
approach (DOA) and the static optimization approach (SOA). DOA involves optimization 
over the entire time period to obtain flux profiles over time, while SOA involves dividing the 
batch time into several time intervals and solving the instantaneous optimization problem at 
the beginning of each time interval. These methods basically are variations of FBA and need, 
for the determination of flux profiles at each time point, constraints and objective functions, 
which describe some goal the cell aims to reach. For the case of microbial systems, a 
reasonable objective may be maximization of the growth rate. However, determining an 
unbiased objective function in a eukaryotic system is often difficult. 

In contrast to these methods that require objective functions, we proposed extending DFE 
with the infusion of additional information [19]. We distinguished four cases. First, the 
connectivity of the systems is not fully known or some of the connections are uncertain. 
Second, some of the time series data were not measured, although it is known how the 
corresponding metabolites are involved in the pathway. Third, the system contains “missing” 
metabolites which are neither known nor measured, but in actuality affect the system 
significantly. And fourth, the flux system is underdetermined, even though the time series of 
all relevant metabolites are measured. 



The first issue might be ameliorated by methods developed for structure identification of 
unknown of ill-characterized pathways. These methods include a wide spectrum of 
techniques, such as perturbation methods, causality models, correlation-based approaches, or 
probabilistic models, some of which are based on time series data (see [2] for review). The 
lack of certain data in the second case could be complemented by deducing the unknown time 
profiles from time series of neighboring metabolites, if the corresponding enzymatic 
information is available for fluxes producing and degrading a metabolite in the equation. 
However, this approach of using kinetic information obtained in vitro, or maybe even from 
different organisms, is naturally problematic due to some degree of bias and uncertainty. A 
possible solution strategy for the third case is to check the mass balance in the entire system 
throughout the time period. If significant changes in mass balance are observed, additional 
biological insight will be needed to check the pathway model and identify possible sources of 
leakage or gain of mass. If the masses are more or less balanced, it is still possible that 
important fluxes or metabolites are missing. However, there is currently no obvious defense 
in this situation. Finally, to complement an underdetermined flux system, some of the fluxes 
need to be estimated with information from other sources. For instance, it might be possible 
to obtain fluxes directly from experiments, but such data are rare. As an alternative, one may 
assume the functional form for an enzymatic reaction, and if corresponding kinetic 
information is available, for instance from BRENDA [20], parameter values may be 
estimated for this functional form. As a variation on this strategy, one could assume some 
canonical model, such as power-law functions [21] or lin-log approximations [22,23], if some 
of the variables and fluxes operate within relatively small ranges. Clearly, this option runs 
counter to the model-free nature of DFE, but might be the only feasible solution. Instead of 
using kinetic information, one could also select some of the decoupled equations and use 
optimization methods to fit the selected model to the time series data (e.g. [24,25]). 

Although we presented proof of concept that the different approaches described above can be 
used to supplement DFE, these approaches are not always optimal, because they require 
additional information and assumptions that are a priori not validated. The question thus 
arises: can we directly squeeze additional information out of the time series data, without the 
need of further assumptions and additional information? And if so, under what conditions is 
that possible? Providing at least partial answers to these questions is the topic of this article. 

Specifically, we propose here a distinct approach to supplementing DFE with information 
hidden in suitable metabolic time series. Extracting this information permits the 
determination of a sufficient subset of fluxes to execute DFE on the rest of the flux system. In 
contrast to all other solutions presented so far for the complementation of DFE, the method 
proposed here does not require any assumptions regarding the mathematical representation of 
the fluxes. Furthermore, kinetic information or knowledge of the functional forms of the 
enzymatic reactions is not required. We will demonstrate in the following that the proposed 
method can succeed even if some of the time series data are not measured or when there is 
mass leakage in the pathway systems. In addition, the new method allows us to address a 
recurring unanswered question, namely how many time series data are needed to estimate the 
structure and parameters of a system. 

Specific details of the proposed approach are presented in the Methods section. While the 
methodological details require some technical discussion, the concept of the proposed method 
may be best explained with the following simple example. Suppose a metabolic system 



contains the equation ( ) ( )i i j i iX v X v X )j i i) () () (() () ( )) ((i i jX i i j(v (i ((( , which is typical for a reaction between Xj and Xi, 
combined with the degradation of Xi within a linear section of a pathway system: 

j iX XiXi  

Suppose we have time series data, so that we can estimate iX� for every measured time point 
with sufficient accuracy. Suppose further that the time series data are such that we have m 
time points (in the same or in different datasets) where Xi has the same value (e.g., ci), 
whereas Xj has a different value at each of these time points. It is reasonable to assume that 

iv  is a function in a strict mathematical sense, which means that )( ii cv (  has one unique 

(although yet unknown) value vci. If so, we have m equations of the type ijii vcXvX vv )(�
, 

where the values of Xj and iX�  are known directly from the data and vci always has the same 
value. Using these quantities, the methods proposed here allow us to estimate the functional 

format of )( ji Xv ( , at least over some pertinent range of Xj values. Once we know )( ji Xv ( , 

we can determine )( ii Xv ( . Thus, we now have numerically quantified two fluxes, which 
reduce the discrepancy between the number of equations and the number of independent 
fluxes. Repeated application of the method allows DFE for the entire system. An illustrative 

iv  example is shown in Methods and other examples are presented in the Results. If the 
function depends on more than one variable, the procedure is the same in concept but more 
complicated in detail (see Additional file 1). 

Methods 
The proposed method offers a systematic strategy to extend DFE and to ameliorate its 
limitations. Just like DFE, the proposed method starts with an optional data preprocessing 
step, but without any assumption regarding the functional formats of the fluxes in the system. 
First, the experimental data are tested for mass conservation to make sure no mass is lost or 
gained during the observed time period. If the data do indicate losses or gains in mass, it is 
useful to locate possible branches off the main pathway(s) and to account for the changes in 
total mass of the metabolites in the pathway [19]. Second, the time series data are smoothed 
as necessary, which makes it easier to estimate the slopes of all time courses at a given 
number of time points, using different numerical techniques. These established smoothing 
methods include splines, artificial neural networks, as well as different types of filters, such 
as the popular Kalman, Savitzky-Golay, Whittaker, or Eilers filter (see [2,26,27] for 
applicable methods). In parallel to these data preprocessing steps, the pathway structure (the 
system topology) is used to generate a system of symbolic equations describing the dynamics 
of the system. The generic format for such a representation may be written as 

1 1( , , ) ( , , ), 1, , ,i ij n ij nX V X X V X X i nij 11( 1( 1( 1((iX i ijijVij 1, , ,1, ,n ij n1 ),n1, ,1, ) ( , , ),) ( , , ),1, ,1) ( )) ( )) ( (1) 

where Xi denotes the concentration or amount of a variable or variable pool and n is the total 
number of time-dependent variables in the system. The functions [[]] and [[]] represent 
reactions or fluxes entering or leaving the quantity Xi, respectively. Substituting slope 



estimates for the differentials in this system of equations decouples the ordinary differential 
equations (ODEs) and results in a system of fluxes that is linear at each time point t 
[21,28,29]. The algebraic equations may be represented in matrix format as 

( ) ( ),    1, , ,j jt t j K( ) 1j j( ),    1,),    j(s N v , ,,  (2) 

where s is a vector of slopes, N is the stoichiometric matrix, v is a vector of fluxes, and K is 
the number of time points t1, t2,…, tj,…, tK where measurements are available. 

Next we check the rank of the linear set of algebraic equations in Eq. (2). The system can be 
easily solved at each time step to obtain dynamic profiles of all fluxes if the system has full 
rank. Over-determined systems may be solved by pooling fluxes, the use of pseudo-inverse 
methods, or regression. However, if the system is underdetermined, the solution space is 
infinite. To overcome this issue, some of the fluxes need to be estimated independently, until 
the system has full rank and can be solved uniquely. Elsewhere we showed that additional 
information maybe used to characterize selected fluxes [19]. Here, the goal is to estimate 
some fluxes directly from the time series data, without evoking other sources of information.

As an introductory example, consider a linear part of a pathway with feedback inhibition as 
shown in Figure 1(a). The equations that describe the system in terms of fluxes are 
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The system could be part of a larger pathway system, but for this illustration the context is 
not relevant. For the illustration, fluxes were generated with a mix of power-law and Hill 
functions, namely
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where Vmax = 5 and KM = 2. We use these settings to create artificial data, but subsequently 
assume no knowledge of the functions or parameters in Eq. (4). 

Figure 1 (a) Generic three-variable linear pathway with feedback inhibition (Eqs. (3–
4)). (b)Time series data, consisting of 50 artificial “measurements” that were generated with 
initial conditions X1(t0) = 5, X2(t0) = 0.1, and X3(t0) = 8; X1, X2, X3 are represented by blue, 
green, and orange dots, respectively 

Suppose time series data were measured and they are without noise (Figure 1(b)). Eq. (3) 
immediately indicates that the flux system is underdetermined and therefore has infinitely 



many solutions. A unique solution could be obtained if one of the fluxes could be determined 
independently. To achieve this independent determination, one may choose any one of the 
three equations in the system. For ease of computation, one will typically prefer an equation 
that contains as few fluxes and as few substrates and modulators as possible. In this linear 
system, all equations have two fluxes and each of them depends on only one metabolite, so 
that there is no advantage to choosing one equation rather than another. 

Generically, we intend to solve the fluxes in the ith equation, which here happens to have only 
two fluxes, namely one influx (vin) going into the pool Xi, and one efflux (vout) leaving this 
pool. The flux vin depends only on the precursor Xin of Xi and vout depends only on Xi itself; to 
minimize confusion, we call this variable generically Xout. Extracting the ith equation from Eq. 
(1), we thus obtain, in general terms, 

.i in outX v v .outvoi inXi inv vinin  (5) 

The functional form of neither flux is assumed to be known. Substitution of derivatives with 
slopes results in K equations of the type

( ) ( ) ( ) ,   1, , .i j in j out jS t v t v t j K( ) ( )in j out j j( ) ( ) ,   1,( ) ( ) ,   in j out j( ) (( ) (( ) ( , .,  (6) 

As a specific illustration, consider the second equation [[]] in Eq. (3), where v2 depends only 
on the precursor X1 and v3 depends only on X2. We substitute the derivative [[]] with slopes 
that can be measured directly from the time series data, possibly upon smoothing. For a total 
of 50 time points, one thus obtains 50 algebraic equations of the type

2 2 2 3( ) ( ) ( ) ,   1, ,50.j j jX S t v t v t j) ( ) ( ) ,   1,j2 3 j) ( ) ( ) ,   ( ) ( ) ,   2 322 j2 3(2 3222 2 jX 2 2 ( )S2 ( ) ,50. (7) 

It is reasonable to assume that the in- and effluxes are true functions in a mathematical sense. 
Thus, since vin depends only on Xin, vin must have one and only one value for every given 
value of Xin. In particular, if Xin assumes the same value at two different time points, vin must 
have the same (so far unknown) value at both time points as well. In the illustration example, 
v2 depends only on X1. Thus, for every value of X1 there is one and only one value of v2. The 
proposed method therefore requires a screening of the available datasets with the goal of 
identifying different situations where Xin has some fixed value Xin_const. For all these 
situations, vin also has some fixed value vin_const. Since we do not know the functional form of 
vin, we cannot directly compute this value vin_const. However, we do know that this value is 
very similar for all situations where Xin ≈ Xin_const. Thus, for the set of all Xin ≈ Xin_const, Eq. (6) 
has the form 

_( ) ( ) ( ) .i j in const j out jS t v t v t( ) ( ) .in const j out j( ) (( ) (( ) (( ) (( ) (( )( ) (  (8) 

In the illustrative example, we screen the available data sets and search for different 
situations where X1 has the same fixed value X1c and, thus, v2 also has the same (yet 
unknown) value v2c. Thus, for the entire set of all X1 ≈ X1c the second system equation has the 
form 



2 2 3( ) ( ) ( ).j c j jS t v t v t( ) ( ).j2 3(2 3( ) (( ) (2 32 (2 32  (9) 

For instance, X1 has similar values (~0.26) at time points 4, 4.8, 8.8, and 9.2, while X2 has 
different values at these time points (Figure 2(a)). 

Figure 2 (a) Fixing X1 within a narrow range (~0.26), four instances of X1 are found 
(solid red circles). Fixing X1 within another narrow range (~0.6) provides three instances of 
X1 (solid orange circles). Similarly, two instances of X1 are found for X1 ~1.26 (solid blue 
circles). (b) Collection of 34 “bins” that exhibit the number of times X1 has approximately the 
same value given on the x-axis; the range of each bin was chosen as 0.05. Among the 34 bins, 
9 bins have at least two instances of the same X1; all other bins are discarded. (c) 
Representation of different X2 values corresponding to at least two X1 values in each of the 9 
remaining bins. The bars connect the two or more X2 values in each bin 

We repeat this type of screening for different sets of the same or very similar values of Xin. 
The result is a set of sets with equal Xin_const values within each set but different Xin_const values 
for different sets. These sets form a histogram with a bin for each Xin_const. If the range of each 
bin is small enough, we can assume every Xin in the same bin to have very similar values, so 
that their corresponding vin_const are also very similar. Henceforth, we only retain bins with at 
least two entries. An example in the illustrative example consists of time points 3.4 and 9.6, 
where X1 has again similar values. In this case, the value is ~1.26, which is different from the 
value we screened before. Similarly, for time points 1, 8.4, and 9.4, X1 has a value of ~0.6 
(Figure 2(a)). Figure 2(b) shows many situations in the dataset where X1 has approximately 
some fixed value, and these sets of X1 are reflected in a “bin database of values.” Within each 
bin, the corresponding value of v2c is very similar as well. 

Suppose we have identified P bins that contain at least two Xin. For these bins we determine 
the corresponding Xout values, which are typically different from each other. Suppose that bin 
p contains q values. Thus, we obtain q equations of the type 

_( ) ( ) ( ),   1, , ,i p in const p out pS bin v bin v bin p Pin const p out p p( ) ( ),   1,,   in const p out p( ) (( ) (( ) ( , ,,  (10) 

where vin_const (binp) always has the same value, but Si (binp) and vout (binp) have different 
values. For our illustration we specify nine bins (P = 9) (which have at least two X1 (Figure 
2(b)), and their corresponding values of X2 at the same time points are shown in Figure 2(c). 
The 6th of the nine bins (shown as the orange bin in Figure 2(a)) contains three instances of 
X1. Therefore, we obtain three equations of the type 

2 6 2 6 3 6( ) ( ) ( ).cS bin v bin v bin2 6 3 6( ) ( ).2 6 3 66 3( ) (( ) (2 6 36 32 6 3 (11)

Equation (10) is formulated analogously for each bin p =1, …, P. In each case, vout (binp) can 
be represented as at least two equations of the type 

_( ) ( ) ( ) , 1, , .out p in const p i pv bin v bin S bin p Pin const p i p p( ) ( ) , 1,( ) ( ) ,in const p i p( ) ( , .,  (12) 

Since we do not know the functional form of vin, we do not know the numerical value of 
vin_const (binp). However, since vin_const (binp) is a constant for each bin, the relative positions of 



a group of values of vout (binp) depend on each value –Si (binp) within a given bin, and the 
slope values can be measured directly from the time series data. In addition, since vout (binp) 
is solely determined by Xout (binp), we can characterize the relative positions of a set of Xout 
(binp) and their corresponding values –Si (binp). Collecting these relationships, we can 
establish a plot of Xout (binp) versus –Si (binp). If the bin contains only two points of Xout, we 
consider them as a pair and link them with a connecting line. If the bin contains q points of 
Xout (where q > 2), we sort Xout based on their values and connect every two adjacent points as 
a pair to form a total of q-1 pairs. In order to address these pairs, we use an additional index 
for the position of each pair in each bin, such as (Xout (pairr)(1), –Si (pairr)(1)) for the first 
point and (Xout (pairr) (2), –Si (pairr) (2)) for the second point, where r = 1, …, q–1. 

To continue the illustration, the 8th bin contains two instances of X1 ~1.26. The corresponding 
values of X2 are 1.54 and 2.93, and the –S2 values are −1.35 and 0.93, respectively. The points 
in the plot of X2 (bin8) versus –S2 (bin8) are therefore represented as (1.54,–1.35) and (2.93, 
0.93). We consider these two points as a pair and link them using a red line (Figure 3(a)). 
Similarly, the 5th bin contains four instances of X1 ~0.26. Their corresponding values of X2 
are 1.20, 1.37, 1.66, and 1.99, and the –S2 values are 0.05, 0.35, 1.02, and 1.65, respectively. 
The points in the plot of X2 (bin5) versus –S2 (bin5) are therefore represented as (1.20, 0.05), 
(1.37, 0.35), (1.66, 1.02), and (1.99, 1.65). Two points each are considered a pair and linked 
with a red line (Figure 3(b)). After the pairs of points are determined, we prune the set by 
neglecting pairs where the distance between Xout (pairr)(1) and Xout (pairr)(2) is below some 

threshold ( )(1) ( )(2)r out r out rd X pair X pair )(2)out r out rX pair X pai( )(1) ()(1) (out r out rout r o( )(1) ()(1) ()(1) ( . The reason is that small line segments tend to 
lead to unduly high estimation errors. The default value for dr is set as 0.2 in the examples 
shown in this article, but it will generally depend on the accuracy and quantity of the data. 
The higher the value is, the fewer pairs will remain after filtration. However, as long as the 
remaining pairs cover most of the spectrum in the X axis, an increase in dr might be 
preferable. Suppose s pairs remain after this filtering. Figure 4(a) shows the collective result 
for the illustration example. 

Figure 3 (a) The 8th bin in Figure 2(b) contains two different X2 values corresponding to 
the “blue” instances in Figure 2(a) for X1 ~1.26. The corresponding values of X2 and –S2, 
obtained from the plot of X2 versus –S2, are (1.54, -1.35) and (2.93, 0.93). These two points 
are considered a pair and linked with a red line. (b) The 5th bin of Figure 2(b), corresponding 
to the “red” instances in Figure 2(a), contains four instances of X1 ~0.26. Their corresponding 
values of X2 and –S2 are (1.20, 0.05), (1.37, 0.35), (1.66, 1.02), and (1.99, 1.65). Two points 
each are considered a pair and linked with a red line 

Figure 4 (a) Pairs of points satisfying a threshold value of d (see Methods) greater then 
0.2. Seven pairs (s = 7; connected by blue lines) are selected for the following steps. The 
green line is the true functional representation of X2 versus v3, which in an actual situation is 
not known. (b) Pairs in (a) are merged, based on the distances between points in each “node” 
and the distances between two points in a pair. (c) Subgroups of pairs in (b) are merged. (d) If 
the value of v3 is known for X2 = 1or for some other value. The entire cluster of lines is 
vertically shifted accordingly. If small values of X2 are covered by the pairs, the shift is 
determined by the observation that a flux is usually zero if the substrate concentration is zero. 
Here, the sum of errors between the estimated points and corresponding points on the true 
green line is 0.0354 



Equation (12) indicates that Xout (binp) and –Si (binp) differ by a constant, since we do not 
know the value of vin_const (binp). This fact translates into a constant vertical shift in the y 
direction for each pair of points. In other words, the relative y positions of the pair are 
preserved and the pair has to be shifted together by a yet unknown amount. While we do not 
know the size of the shift for each individual pair of points, all points collectively represent 
the graph of Xout versus vout, and it is reasonable to assume that this graph is continuous and 
usually even monotonic. Therefore, the next step is to merge the individual pairs by 
determining a proper shift for each pair. 

Intuitively, it is easy to see how to shift all pairs so that they are close to one continuous line. 
Automation of the process requires an algorithm that is not quite straightforward, but can be 
facilitated with a graphical user interface; technical details of a possible merging process are 
presented in Figure S1 of the Additional File 1. A pseudo-code of the merging is the 
following: 

SET each pair of points as a node 

SET each node as a subgraph 

WHILE the graph is not connected 

  

FOR each subgraph in the graph 

  

FOR each node in the current subgraph 
  SET other-subgraphs as the subgraphs; exclude the current subgraph 

  CALCULATE the distance from the current node to every node 
contained in other-subgraphs 

 

  END FOR 
  FIND the shortest distance and its corresponding nodes 
  CONNECT these two nodes 

 

  END FOR 

END WHILE 

When the merging is completed, all pairs of points are close to a relatively smooth line, but 
the overall shift of the group of pairs is not known. We do know that essentially all metabolic 
fluxes will have values close to zero when their substrate concentration approaches zero. 
Thus, if sufficiently small substrate values are available in one of the bins, one easily 
estimates a reasonable shift. Should the flux value associated with some substrate 
concentration be known, the shift can be determined from this information. A further 
alternative is the following. If the inferred trend line suggests that the flux follows some rate 
law, such as a Hill function, the parameters of this function, together with the appropriate 
shift, can be obtained in a single optimization step. 

Figure 4(b) shows, for the illustrative example, the process of merging and shifting. The 
human eye has no problem accomplishing this task intuitively. In the automated process (see 
Additional file 1), one connects each “node” (pair of points) with its closest-neighbor node 
and positioning the pair of points. This process creates two sub-groups of points. We 
recalculate the distance between each node in a sub-group with the nodes in the other sub-



group, determine the closest pair of nodes, connect them, and shift the corresponding pairs 
into one sub-group as shown in Figure 4(c). Suppose the value of v3 is known for X2 = 1. If so, 
we ultimately shift the entire trend accordingly. The result is shown in Figure 4(d). A shift 
based on the association between zero flux and zero substrate concentration is an alternative, 
although it does not uniquely prescribe a solution in this case. 

Finally, based on the numerical or graphical flux profile thus determined, one may test 
candidate functions that capture the flux-substrate relationship. For instance, the result in the 
illustrative example shows that the functional relationship of X2 vs. v3 is s-shaped. It could 
thus be consistent with the (true) Hill function in Eq. (4), although the computed result itself 
certainly would not prove that this format is correct. If one assumes, based on the results, that 
a Hill function is appropriate, one may fit this functional form to data to find the optimal 
parameter values of the flux-metabolite dependency. Without making such an assumption, 
one may alternatively connect the dots in Figure 4(d) with a continuous line and interpolate 
the values of fluxes using a spline or another smoothing method. The resulting trend line can 
be used as a “look-up” plot. 

Now that we have determined v3, it is easy to compute v2 from the measured slopes of X2. The 
plot of v3 is slightly curved, which is consistent with its power-law function in Eq. (4), 
although again, there is no proof. The Results section discusses further examples. 

The parameters of any candidate functional form are easily estimated, because no differential 
equations are involved and the problem is of low dimension; they represent a fully 
parameterized kinetic model for the flux term itself and, subsequently for the differential 
equation. Due to this simplicity, it is even possible to scan a variety of candidate functions 
and assess their appropriateness. If a suitable functional format can be determined with 
appropriate parameter values, the task is completed. If not, one may represent the flux-
substrate plot with a piecewise-polynomial function, such as cubic spline. Even in this non-
explicit, numerical format, the result is sufficient to reduce one or two degrees of freedom in 
the overall DFE task. Figure 5 presents the overall flow and concept of the method. 

Figure 5 Flowchart of the proposed method. Starting with experimental time series, the 
data are smoothed and balanced for mass conservation, if necessary. The slopes of the time 
series at each time point are estimated. Combined with the knowledge of the system 
topology, substitution of the derivatives in the ODE with slope information yields a linear 
system of fluxes. If the system has full rank, solve the system with techniques from linear 
algebra. If the system is underdetermined, use auxiliary steps, as proposed in this article, to 
solve a subset of the fluxes until the system is of full rank. The results are the dynamic 
profiles of all extra- and intra-cellular fluxes in the system. If desired, make assumptions 
regarding the functional forms of the fluxes. These functions correspond to symbolic flux 
representations that can be independently fitted to the respective dynamic flux profiles and 
result in a fully parameterized kinetic model. As an alternative each process may be 
approximated as a piecewise function, for instance using spline methods 

The procedure described above has generated one or two additional flux estimates. For the 
example in Eq. (3), the determination of v2 and v3 “fills” the rank, and the system can be 
uniquely solved. In fact, only one of the two is needed. For examples where one or two 
additional fluxes are not sufficient for a unique solution, the same procedure has to be 
performed with other equations until enough fluxes are determined to make the flux system 



full rank. DFE subsequently identifies all other fluxes as plots against time or against their 
substrates and modulators. 

In cases where fluxes contain more than one variable, the time courses have to be screened 
for combinations where the contributing variables have the same values. The concepts of the 
procedure are exactly the same as for the univariate case, but the implementation is obviously 
more involved (see Additional file 1). Also, such combinations are rarer than in the cases 
described above, so that these situations require more diverse datasets for structure 
identification. 

Results
The simple linear pathway shown in the previous section illustrated the concepts of the 
proposed extension to DFE. This section describes applications of the proposed methods in 
the context of further didactic and actual examples that become increasingly more 
complicated. We begin with two artificial cases with distinct characteristics and conclude 
with the analysis of experimental observations describing trehalose metabolism in the yeast 
Saccharomyces cerevisiae. 

Branched pathway with feedforward activation and feedback inhibition 

Consider a branched pathway with fluxes represented by various functional forms, including 
Michaelis-Menten and Hill functions with inhibition and activation. The pathway, shown in 
Figure 6(a), can be described by the following set of ordinary differential equations [30]: 
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The kinetic descriptions for each of the reactions are: 
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As before, we use these formats to generate artificial data, but subsequently assume no 
knowledge of their characteristics. 

Figure 6 (a) Metabolic network with positive feedforward and negative feedback. All 
enzymatic reactions are assumed to follow Michaelis-Menten or Hill kinetics except for those 
corresponding to v2 and v5, which are assumed to be represented with an Irreversible General 
Hyperbolic Modifier Kinetic function and with an Irreversible Hill function with one 
modifier, respectively (see Eq. (14) for details). (b) Sets of initial conditions used to generate 
six different datasets. (c) Time series data corresponding to the first set of initial values in (b); 
X1, X2, X3, X4 are represented by blue, red, orange, and green dots, respectively 

The system in Eq. (13) is not of full rank. Thus, some of the fluxes need to be determined 
with the proposed method. For our illustration, we select the third equation in Eq. (13), 
because it contains only two fluxes; also, v3 depends only on X2, and v4 depends only on X3, 
which we know from the topology of the pathway. In the previous example, all time series 
were oscillating and it was easy to find enough data points where one variable is fixed and 
other variables display different values. In the present example, each single dataset displays 
changes over time that show few repeated concentration values (see Figure 6(c)). In such a 
situation, which is more typical than the earlier illustration example, one can use exactly the 
same method, applied to multiple datasets with different dynamic profiles, as long as one can 
validly assume that the functional forms are not affected by differences among the datasets. 

For this illustration, we simulated multiple datasets with the initial values presented in Figure 
6(b), which could easily reflect actual experimental settings. Figure 7(a) shows the result of 
binning X3 by using the first four datasets in Figure 6(b). The corresponding pairs of X2 
(Figure 7(b)) range from 0.25 to 2.24, which covers most of the range of X2 in the four 
datasets (from 0.25 to 2.34). The merging process of pairs is shown in Figure 8, with panels 
corresponding to those in Figure 4. In particular, Figure 8(c) exhibits the merged points, 



which evidently form a sigmoidal shape where the first few points are basically flat. 
Therefore, one can assume the flux at the smallest X2 (~0.25) to be close to zero and shift the 
entire set of merged pairs up by about six units to obtain the estimates of v3. Indeed, this step 
recoups the true flux, which is shown in green, but would be unknown in a real application. 
Once v3 is determined, the system of Eq. (13) is still underdetermined and another flux needs 
to be estimated to make the system full rank. The most straightforward choice is v4, which is 
directly computed from v3 and the measured slopes of X3. 

Figure 7 (a) Bins of instances of X3 for different values; the range of each bin is chosen 
as 0.033. Among the 26 bins, 13 bins have at least two X3 values; the others are discarded. (b) 
Representation of 13 sets of corresponding X2 values in those bins that have at least two X3. 
The bars connect two or more X2 values within each X3 bin 

Figure 8 (a) Collection of s pieces exceeding a chosen threshold d (here s = 12 and d = 0.2; 
see Text). The green line is the “true” functional representation of X2 versus v3. (b) Pairs in 
(a) are merged based on their distances and on the distances between two points in a pair. (c) 
The subgroups of pairs in (b) are merged. (d) The sigmoidal shape of points in (c) suggests 
that the flux of the smallest X2 (~0.25) should be close to zero. The sum of errors between the 
estimated points and their corresponding true values (on the green line) is 0.0551 

Instead of v4, one could also estimate an additional flux from another equation in Eq. (13) 
using the same procedure, for example, by solving v5 and v6 in the fourth equation. Flux v6 
depends only on X4 but v5 depends on two variables X1 and X2. The steps of estimating v5 and 
v6 are described in Additional file 1. We also tested the proposed method by using six 
datasets in Figure 6(b) and the results similarly recover the true functional form (data not 
shown). 

The proposed method was also tested on a five variable system that has been used as a 
benchmark problem in many articles (e.g. [24,31-33]). To demonstrate the applicability of the 
method, we also added artificial noise to the time series data in this example and randomly 
picked sub-datasets from data generated with ten conditions. The details and results are 
shown in Additional file 1. 

Glycolysis and trehalose production 

This last example describes in a simplified fashion how the baker’s yeast Saccharomyces 
cerevisiae converts glucose into end products and how trehalose is synthesized and degraded 
in a cyclic pathway (Figure 9). The data [34] consist of actual in vivo NMR measurements of 
metabolic profiles that characterize how the yeast responds to heat stress in two time regimes 
at the genome, protein, and metabolic levels. For the illustration here we use the metabolite 
dynamics of normally grown cells that were then exposed to heat stress (39 °C) and fed with 
a pulse of glucose. Immediately after glucose addition, the initial metabolite pools (G6P and 
FBP) increase, while trehalose (Tre) increases with a short delay and begins to decrease 
slightly after two minutes. The end products ethanol, glycerol, and acetate gradually 
accumulate. The concentration data are shown as dots in Figure 10, together with the 
modeling results that are described next. 

Figure 9 Schematic representation of a simplified model of glycolysis and the trehalose 
cycle in the yeast Saccharomyces cerevisiae (adapted from [34]). Xi and vi represent 
dependent variables and fluxes, respectively. One inhibitory interaction is shown in red. 



Abbreviations: X1, extracellular glucose; X2, intracellular glucose; X3, glucose 6-phosphate; 
X4, trehalose; X5, fructose 1,6-bisphosphate; X6, extracellularly accumulating end products 
(ethanol, glycerol and acetate); X7, mass diverted into the pentose phosphate pathway; X8, 
mass consumed by other pathways (e.g., TCA); v1, glucose transport; v2, hexokinase and 
glucokinase; v3: aggregated step of all enzymatic steps between glucose 6-phosphate and the 
production of trehalose; v4, trehalase; v5, phosphoglucose isomerase and 
phosphofructokinase; v6, aggregated step of all enzymatic steps between fructose 1,6-
bisphosphate aldolase and the release of end-products; v7, flux into the pentose phosphate 
pathway; v8, flux towards other pathways (leakage). Metabolites without available 
experimental measurements are shown in gray. The flux v6 (blue) is directly measurable from 
the time series of X6. Fluxes v3 and v4 (green) were estimated using the proposed method 

Figure 10 Experimental metabolite time courses of glucose metabolism determined by 
in vivo 13 C-NMR in Saccharomyces cerevisiae grown under optimal temperature (30 °C) 
with a single pulse of glucose (65 mM) (adapted from [34]). The dots for X1, …, X6 are 
experimental measurements, while X7 was determined from the flux v7, which was inferred 
with the methods described in the Text. The lines are the result of a model simulation with the 
inferred fluxes. The end products (ethanol, glycerol and acetate) are summarily represented as 
X6 

The model contains eight dependent variables and eight fluxes, as shown in Eq. (15), where 
Vext and Vint represent the extracellular (0.05 L) and intracellular (0.00717 L) volume of the 
bioreactor and the cell population, respectively. Each of the fluxes is a function of some of 
the variables, as shown in Eq. (16), but it is important to note that we do not make any 
assumptions regarding the functional forms of the fluxes. In principle, DFE seems to be 
directly applicable. However, the time series data contain the measurements of only five of 
the metabolites, namely Glc (X1), G6P (X3), Tre (X4), FBP (X5), and extracellularly 
accumulated end products (EtOH, Gly, and Ace; X6). Without the measurements of X2, X7, 
and X8, the system in Eq. (15) is not of full rank and, due to the experimental set-up, v7 and v8 
cannot be measured or determined directly by estimating slopes. 

To complement the rank of the flux system, we use the proposed method of flux estimation. 
First, one should note that the measurements of Glc (X1) concern extracellular glucose. Thus, 
X1 is easy to measure experimentally, but it is very difficult to obtain good measurements of 
intracellular glucose (X2), because it is immediately converted in to G6P (X3). Thus, the 
proportion of Glc (X2) is negligible in comparison to Glc (X1), and because the measured 
concentration of glucose is close to the sum of Glc (X1) and Glc (X2), we merge X1 and X2 
into one pool, which is represented by the sum of the first two equations in Eq. (15). 
Furthermore, the amount of material entering the pentose phosphate pathway (PPP; X7) is not 
directly measurable, but independent lab experiments had indicated that it has a value of 

approximately 5% of the glycolytic flux; thus 57 05.0 vv v0  [34]. With these simplifications, 
the system can be formulated as 
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To supplement the underdetermined DFE, we select the equation [[]] in Eq. (15), since it 
contains only two terms and the measurements of X3 and X4 are available. As before, we fix 
X3 at some values (Figure 11(a)) and find the corresponding X4 and –S4 (Figure 11(b)). The 
merged pairs suggest an approximately exponential function (at least for the range of 
available X4) and the minimum of X4 is very close to zero. For a concentration close to zero, 
the value of the flux should be close to zero as well. Therefore, the entire cluster of pairs is 
moved up around 4 units, and the updated functional plot is shown in Figure 11(d). The 
corresponding v3 can now be calculated accordingly and transformed to the form as fluxes 
versus time. After the determination of v3 and v4, the system of Eq. (15) becomes full rank 
and the rest of the fluxes at each time point can be solved with DFE even without knowledge 
of the times series of X7 and X8. Indeed, the time courses of X7 and X8 can be calculated via 
point-by-point integration of v7 and v8. Upon the determination of the concentrations of all 
variables, the total mass over time can be calculated, confirming no significant loss or gain of 
mass (Figure 11(f)). 

Figure 11 (a) The experimental concentration data (29 time points) were smoothed and 
interpolated with a spline function, thereby yielding metabolite levels of X3 at about 300 
time points. These X3 values were put into 186 different bins with size 0.03. Among these, 
54 bins have at least two X3 values. (b) Graph of X4 values, corresponding to at least two X3 
values in each of the X3 bins. Selection of s pairs with a threshold d of 0.3 (here s = 12; see 
Text) are selected. (c) Pairs in (b) are merged. (d) Resulting functional plot of X4 vs. v4; the 
blue dots represent the dots in (c), while the red triangles represent the true plot of X4 vs. v4 in 
the dynamic model; in reality, these would not be known. (e) Functional plot of X3 vs. v3 
(blue dots), calculated from the blue dots in (d), and true values of X3 (red triangles) 



according to the dynamic model. (f) Confirmation that the total mass (represented as the 
number of 3-carbon units) does not change appreciably over time 

Once we have obtained the time series of all fluxes, we can generate the plots of 
concentrations of metabolites that are involved in the enzymatic reactions (see Eq. (16)) 
versus a flux. The results are shown in Figure 12. As a validation test, we used these 
numerical flux representations of each enzyme catalyzed reaction to simulate the 
concentration changes of metabolites. The simulation results are shown in Figure 10. 

Figure 12 Results from the proposed method and subsequent application of DFE to 
yeast data from the model in Figure 9. Shown are metabolite concentrations against fluxes 
at different time points (blue dots), connected by inferred trend lines for all fluxes (green 
lines) 

Discussion 
Of all steps in the generic mathematical modeling process, parameter estimation and structure 
identification continue to be among the most severe bottlenecks for modeling biological 
systems. Until recently, this task was typically pursued from the bottom up by using local 
data from individual enzymatic steps. However, modern techniques of molecular biology 
have provided us with a strikingly different estimation strategy, namely a top-down or inverse 
approach, which is based on dynamic time series data that are being generated with rapidly 
increasing frequency and quality. Many recent articles have proposed various methods to 
tackle this inverse estimation problem using time series data. However, none of these 
methods are effective in all cases. Furthermore, almost all methods have been focusing on the 
goodness of fit and the speed of the algorithm, but not necessarily the quality of fit in terms 
of the validity of the model, extrapolation ability, and predictive power with respect to data 
not used in the estimation. In addition, there has been little discussion of the diagnostic tools 
for data fits beyond the residual error. For instance, it is possible that a fit is good in terms of 
the residual error, but that the estimated fluxes are incorrect because of numerical 
compensations between terms within the model [10]. 

Dynamic Flux Estimation (DFE) [10] addresses several of these issues successfully, but only 
if the data are rather comprehensive. More limiting, DFE requires that the system of fluxes is 
of full rank. When the number of fluxes exceeds that of the dependent metabolites, either 
because of the stoichiometry of the pathway or due to the lack of measurements of some 
metabolites, DFE cannot be applied directly, because the system of fluxes is 
underdetermined. To supplement such a system, we recently proposed methods for 
supplementing DFE with other information that may be used as a substitute for unknown 
fluxes [19]. However, these methods are successful only under certain restrictive conditions, 
for instance, when the enzymes in the system are well characterized under pertinent 
conditions, sufficient kinetic information is available, and all significant metabolic time series 
are measured. One could also determine some of the fluxes within the system by fitting pre-
selected models to time series data. However, this pre-selection requires the definition of 
functional forms for the reactions in question, which in truth are often unknown. 

In this article we proposed a model-free approach with minimal assumptions to supplement 
DFE with information already embedded in the time series data. The proposed method starts 
with the selection of a decoupled equation; preferable one that contains a minimal number of 



terms and contributing metabolites. Within this equation, we repeatedly fix one or a few 
variables that have constant or very similar values within certain small ranges, and find the 
corresponding values of the variables that appear in another flux of the equation. The result of 
this step is a plot of a flux versus a metabolite, with several pairs of points showing the 
relative positions of the true metabolite concentration and the flux values in each pair. The 
position of each pair is initially subject to shifting in the y direction by an unknown amount. 
The correct shifting of pairs may be accomplished with an automated or manual merging 
process that, for instance, accounts for the fact that the flux value should be zero when the 
metabolite concentration is zero. One could also measure the flux value at some metabolite 
concentration experimentally. Furthermore, if an enzymatic rate function is deemed correct 
and corresponding kinetic information is available, the vertical shift in the flux can be 
calculated. Once the metabolite-flux plots are established for all fluxes, one can select a 
suitable mathematical representation for the entire dependency or use a piecewise 
approximation for different ranges of data. One could also use the metabolite-flux 
relationships directly as “look-up” plots. 

The proposed method may appear cumbersome or even baroque. However, one should 
consider that it solves a problem that so far has not even been addressed—let alone solved—
with any systematic approach. Also, the method is presently likely to suffer from a lack of 
suitable data. But judging by the development of high-throughput experimental methods and 
the number and increasing quality of published time series over the past decade, this issue 
seems to be primarily a matter of time. Indeed, one should expect that it will soon be feasible 
to generate strategically selected, multiple datasets for the identification of a system, which 
differ slightly in their settings. These datasets must come from experiments that do not alter 
the functional characteristics of the fluxes in the system but might, for instance, measure 
system responses under modestly different substrate or inhibitor conditions. At the same time, 
the data should be representative of the dynamics of the system within the pertinent ranges of 
its variables. 

The method involves one step that is subject to bias. Namely, the overall shifting of the flux-
metabolite relationship requires extrapolation or some other information, unless metabolite 
concentrations close to zero are available. To resolve this issue, it might be possible to 
determine a reference point for the shift from enzymatic or kinetic information. However, in 
many cases, this information will have been obtained in vitro and possibly under different 
conditions. A more direct approach would be to measure a flux value experimentally at some 
point, for instance, at the steady state. Such a measurement is relatively simple when the flux 
of interest is an input or output flux. It might also be possible to measure some fluxes directly 
by estimating the rate of consumption and production of the initial substrate or the end 
product, respectively. However, the measurements of fluxes at these locations are usually of 
lower interest since they are seldom associated with the underdetermined subsystems of the 
internal fluxes. One or more intracellular fluxes could also possibly be characterized through 
measurements of a suitable isotopomer distribution at steady state (i.e. [17,35]), but such data 
are still rare. Finally, if one has valid reason to assume a particular format for a flux, such as a 
Michaelis-Menten or Hill function, the shift may be obtained through optimization. All 
estimation methods are negatively affected by noise, and the proposed method is no different 
(see Additional file 1). However, issues of noise can be logistically separated from this 
method to some degree. Namely, the time series data used as basis for the proposed method 
may (in fact, should) be smoothed in a preprocessing step, for instance with a filter [2,26,27]. 
This well-established step allows an assessment of the characteristics of the noise as well as 



the smoothing process itself. Once the data are smoothed and noise is thus reduced, the 
proposed method is applied as if the data had been noise free. 

Outside these remaining details, the proposed method has several notable advantages. First, 
no assumptions are needed regarding the mathematical representations when determining the 
individual fluxes. Second, the application of the method is not limited to a small range of a 
metabolite or its flux. Instead, it allows the modeler to examine the full spectrum of the 
functional form, depending on how widely the available time series data cover metabolite 
concentrations along the x axis of the metabolite-flux plot. Third, even under the condition 
that some of the time series are missing, the proposed method can still recover—at least to 
some degree—the governing flux profiles. Finally, since the range of coverage depends on 
the available datasets, we can, arguably for the first time, estimate how many data points are 
necessary to identify the functional format of a flux or what values of metabolite 
concentrations are needed to cover the concentration range of interest. Namely, if it is 
possible to implement the proposed method for a system at hand with sufficient reliability, 
then we know that we have enough data to assess the range over which the flux can be 
determined. If a wider range needs to be known, additional data will have to be made 
available in that extended range. This insight in itself will aid the design of specific 
experiments that can be used to generate more extensive functional plots. 

Conclusions 
In this article we propose a systematic strategy to supplement and ameliorate the limitations 
of the method of Dynamic Flux Estimation (DFE). The proposed strategy makes no a priori 
assumptions regarding the model representation and uses instead information embedded in 
the time series data. The results demonstrate that the proposed approach successfully 
complements DFE in various situations. The method permits the examination of a full 
spectrum of functional forms, as well as a determination of whether at all, to what degree, or 
within what range, the available time series data can be validly represented in a particular 
functional flux format within a pathway model. Based on these results, one can, arguably for 
the first time, estimate how many data points are required to identify the functional format of 
processes within a system model and design experiments to generate data points that 
genuinely add new information to the parameter estimation and structure identification tasks. 

Competing interests 
The authors declare no competing interests. 

Authors’ contributions 
Ideas and concepts were jointly discussed among both authors. ICC developed and 
implemented the project under the supervision of EOV. Both authors contributed to the 
writing of the manuscript. Both authors read and approved the final manuscript. 

Acknowledgments 
The authors are grateful to Dr. Luis L. Fonseca for constructive discussions and for allowing 
us to use some of his data. They also acknowledge David Fieni’s work on an automated 



shifting algorithm. This work was supported in part by a Molecular and Cellular Biosciences 
Grant (MCB-0946595; E.O. Voit, PI) from the National Science Foundation, a grant from the 
National Institutes of Health (R01 GM063265; Y.A. Hannun, PI), and an endowment from 
the Georgia Research Alliance. The work was also in part funded by the BioEnergy Science 
Center (BESC), which is a U.S. Department of Energy Bioenergy Research Center supported 
by the Office of Biological and Environmental Research in the DOE Office of Science. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those 
of the authors and do not necessarily reflect the views of the sponsoring institutions. 

References 
1. Voit EO (2004) The dawn of a new era of metabolic systems analysis. Drug Discov Today 
BioSilico 2(5):182–189 

2. Chou I-C, Voit EO (2009) Recent developments in parameter estimation and structure 
identification of biochemical and genomic systems. Math Biosci 219(2):57–83 

3. Gennemark P, Wedelin D (2009) Benchmarks for identification of ordinary differential 
equations from time series data. Bioinformatics 25(6):780–786 

4. Hanekom AJ (2006) Generic kinetic equations for modelling multisubstrate reactions in 
computational systems biology. University of Stellenbosch, In Master of Science Thesis. 
Department of Biochemistry 

5. Schulz AR (1994) Enzyme Kinetics. From Diastase to Multi-enzyme Systems. Cambridge 
University Press, Cambridge, U.K 

6. Gutenkunst RN, Casey FP, Waterfall JJ, Myers CR, Sethna JP (2007) Extracting falsifiable 
predictions from sloppy models. Ann N Y Acad Sci 1115:203–211 

7. Srinath S, Gunawan R (2010) Parameter identifiability of power-law biochemical system 
models. J Biotechnol 149(3):132–140 

8. Vilela M, Vinga S, Maia MA, Voit EO, Almeida JS (2009) Identification of neutral 
biochemical network models from time series data. BMC Syst Biol 3:47 

9. Sorribas A, March J, Voit EO (2000) Estimating age-related trends in cross-sectional 
studies using S-distributions. Stats Med 10(5):697–713 

10. Goel G, Chou IC, Voit EO (2008) System estimation from metabolic time-series data. 
Bioinformatics 24(21):2505–2511 

11. Voit EO (2011) In: Dehmer M, Emmert-Streib F, Salvador A (eds) What if the fit is unfit, 
In Applied statistics for biological networks. Wiley, New York 

12. Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic 
networks: The quest for the missing constraints. Trends Biotechnol 15(8):308–314 



13. Palsson BØ (2006) Systems Biology: Properties of Reconstructed Networks. Cambridge 
University Press, New York 

14. Okamoto M (2008) System analysis of acetone-butanol-ethanol fermentation based on 
time-sliced metabolic flux analysis, In: Symposium on Cellular Systems Biology. National 
Chung Cheng University, Taiwan 

15. Sekiyama Y, Kikuchi J (2007) Towards dynamic metabolic network measurements by 
multi-dimensional NMR-based fluxomics. Phytochemistry 68(16–18):2320–2329 

16. Teixeira AP, Santos SS, Carinhas N, Oliveira R, Alves PM (2008) Combining metabolic 
flux analysis tools and 13 C NMR to estimate intracellular fluxes of cultured astrocytes. 
Neurochem Int 52(3):478–486 

17. Yang C, Hua Q, Shimizu K (2002) Quantitative analysis of intracellular metabolic fluxes 
using GC-MS and two-dimensional NMR spectroscopy. J Biosci Bioeng 93(1):78–87 

18. Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of 
diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340 

19. Voit EO, Goel G, Chou IC, Fonseca LL (2009) Estimation of metabolic pathway systems 
from different data sources. IET Syst Biol 3(6):513–522 

20. (), http://www.brenda-enzymes.org/ 

21. Voit EO (2000) Computational Analysis of Biochemical Systems. A Practical Guide for 
Biochemists and Molecular Biologists. Cambridge University Press, Cambridge, UK 

22. Hatzimanikatis V, Bailey JE (1996) MCA has more to say. J Theor Biol 182(3):233–242 

23. Visser D, Heijnen JJ (2002) The mathematics of metabolic control analysis revisited. 
Metab Eng 4(2):114–123 

24. Chou I-C, Martens H, Voit EO (2006) Parameter estimation in biochemical systems 
models with alternating regression. Theor Biol Med Model 3:25 

25. Vilela M, Chou I-C, Vinga S, Vasconcelos AT, Voit EO, Almeida JS (2008) Parameter 
optimization in S-system models. BMC Syst Biol 2:35 

26. Vilela M, Borges CCH, Vinga S, Vasconcelos ATR, Santos H, Voit EO, Almeida JS 
(2007) Automated smoother for the numerical decoupling of dynamics models. BMC 
Bioinformatics 8:305 

27. Eilers PHC (2003) A perfect smoother. Anal Chem 75(14):3631–3636 

28. Voit EO, Almeida J (2004) Decoupling dynamical systems for pathway identification 
from metabolic profiles. Bioinformatics 20(11):1670–1681 

29. Voit EO, Savageau MA (1982) Power-law approach to modeling biological systems; III. 
Methods of analysis J Ferment Technol 60(3):223–241 



30. Sorribas A, Hernandez-Bermejo B, Vilaprinyo E, Alves R (2007) Cooperativity and 
saturation in biochemical networks: a saturable formalism using Taylor series 
approximations. Biotechnol Bioeng 97(5):1259–1277 

31. Hlavacek WS, Savageau MA (1996) Rules for coupled expression of regulator and 
effector genes in inducible circuits. J Mol Biol 255(1):121–139 

32. Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of 
genetic networks using genetic algorithm and S-system. Bioinformatics 19(5):643–650 

33. Veflingstad SR, Almeida J, Voit EO (2004) Priming nonlinear searches for pathway 
identification. Theor Biol Med Model 1:8 

34. Fonseca LL, Sanchez C, Santos H, Voit EO (2011) Complex coordination of multi-scale 
cellular responses to environmental stress. Mol Biosyst 7(3):731–741 

35. Wiechert W (2001) 13 C metabolic flux analysis. Metab Eng 3(3):195–206 

Additional file 

Additional_file_1 as DOCX 
Additional file 1 This file contains: (1) details regarding the process of merging pairs of 
points; (2) the estimation procedure for a four-variable branched pathway and results of two 
cases where fluxes contain more than one variable; and (3) the results of the method for a 
five-variable system where different levels of artificial noise were added to the time series 
data and sub-datasets were randomly picked from data generated with ten sets of initial 
conditions. [24,31-33]. 


