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a b s t r a c t

The organization, regulation and dynamical responses of biological systems are in many cases too com-
plex to allow intuitive predictions and require the support of mathematical modeling for quantitative
assessments and a reliable understanding of system functioning. All steps of constructing mathematical
models for biological systems are challenging, but arguably the most difficult task among them is the
estimation of model parameters and the identification of the structure and regulation of the underlying
biological networks. Recent advancements in modern high-throughput techniques have been allowing
the generation of time series data that characterize the dynamics of genomic, proteomic, metabolic,
and physiological responses and enable us, at least in principle, to tackle estimation and identification
tasks using ‘top-down’ or ‘inverse’ approaches. While the rewards of a successful inverse estimation or
identification are great, the process of extracting structural and regulatory information is technically dif-
ficult. The challenges can generally be categorized into four areas, namely, issues related to the data, the
model, the mathematical structure of the system, and the optimization and support algorithms.

Many recent articles have addressed inverse problems within the modeling framework of Biochemical
Systems Theory (BST). BST was chosen for these tasks because of its unique structural flexibility and the
fact that the structure and regulation of a biological system are mapped essentially one-to-one onto the
parameters of the describing model. The proposed methods mainly focused on various optimization algo-
rithms, but also on support techniques, including methods for circumventing the time consuming numer-
ical integration of systems of differential equations, smoothing overly noisy data, estimating slopes of
time series, reducing the complexity of the inference task, and constraining the parameter search space.
Other methods targeted issues of data preprocessing, detection and amelioration of model redundancy,
and model-free or model-based structure identification.

The total number of proposed methods and their applications has by now exceeded one hundred,
which makes it difficult for the newcomer, as well as the expert, to gain a comprehensive overview of
available algorithmic options and limitations. To facilitate the entry into the field of inverse modeling
within BST and related modeling areas, the article presented here reviews the field and proposes an oper-
ational ‘work-flow’ that guides the user through the estimation process, identifies possibly problematic
steps, and suggests corresponding solutions based on the specific characteristics of the various available
algorithms. The article concludes with a discussion of the present state of the art and with a description of
open questions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The task of biomathematical modeling comprises the conver-
sion of a biological system into a simplified analogue that is easier
to analyze, interrogate, predict, extrapolate, manipulate, and opti-
mize than the biological system itself. The typical approach to
mathematical model construction consists of nine phases: (1) data
ll rights reserved.
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selection; (2) collection of information on network structure and
regulation; (3) specification of assumptions and simplifications;
(4) selection of a mathematical modeling framework; (5) estima-
tion of parameter values; (6) model diagnostics; (7) model valida-
tion; (8) model refinements; and (9) model application (see Fig. 1).

The first phase requires the identification and selection of data
that are available and suitable to support the purposes of the mod-
eling effort. The second phase is dedicated to collecting informa-
tion regarding the structure and regulation of the system from
the literature and, where feasible, from de novo experiments. This
phase is confounded by the fact that the true topology of the bio-
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Fig. 1. Phases of the typical modeling process in biology. See text for details.
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logical network is often not fully understood and that regulatory
details are in many cases incomplete, obscure, or entirely missing.
Under these circumstances the task of this and the next phases in-
cludes inferences about the network structure and its regulation
from biological data. After collecting all relevant information
regarding the biological system, the third phase is dedicated to
combining this information with additional, acceptable assump-
tions and simplifications that aim to fill the gaps in the available
information. During this phase one also decides which components
and interactions of the system should be included in the model.
The results are usually visualized as diagrams with nodes denoting
the components and arrows representing interactions between
them. The fourth phase includes the choice of a suitable mathe-
matical modeling framework and the formulation of symbolic
equations. The process usually starts with converting the ‘wiring
diagram’ or the ‘network topology’ obtained from the third phase
into model equations. In many biological systems analyses, these
form a set of ordinary differential equations that represent the dy-
namic changes in system variables and are governed by fluxes be-
tween them. The particular symbolic format of the fluxes depends
on the chosen mathematical modeling framework and defines
what questions can be asked of the model and what types of meth-
ods will be applicable. After the symbolic equations are formu-
lated, the task of the fifth phase is to determine appropriate
numerical parameter values that convert the symbolic model into
a numerical model and makes the latter consistent with experi-
mental observations. Once this parameterized, initial model is ob-
tained, the sixth phase is dedicated to diagnostics of the model,
including analyses associated with steady states, sensitivities,
gains, and stability, as well as dynamic features, such as bifurca-
tions and oscillations. In the seventh phase the validity of the mod-
el is tested, either with experimental data that had not been used
for model construction in a process called cross-validation, or with
information from a different biological level. For instance, a meta-
bolic model could be tested against physiological or clinical obser-
vations. As presented so far, the modeling process appears to be
quite straightforward. However, in most cases it is not linear but
cyclic, requiring the return to earlier phases. Addressing the itera-
tive nature of modeling, an eighth phase of model refinement is al-
most always necessary. Finally, once the model is deemed reliable
and appropriate for the stated purposes, phase nine allows the
modeler to reap the fruit of the laborious model design. It is now
possible to make predictions, generate new, testable hypotheses,
suggest the design of novel biological experiments, or manipulate
and optimize the model, for instance, toward increases in yield of
some organic compound in metabolic engineering, or toward the
development of drug treatments in disease.

Among the nine modeling phases, the most challenging task is
usually the estimation of parameter values. This estimation is not
an isolated task but closely related to other phases in the modeling
process. For instance, the size and complexity of the hypothesized
model in the second phase have a direct impact on the difficulty of
parameter estimation and also affect later analyses as well as the
interpretation of results. Most importantly, the choice of the mod-
eling framework naturally influences the degree of complexity, fea-
sibility, and practicability of the parameter estimation task. As a
simple example, an explicit linear model permits the use of linear
regression methods, which are very well worked out. As soon as
the model becomes nonlinear, many of these methods become
inapplicable.

Because of the importance of issues related to model selection
and to implications for parameter estimation, we will use Section
2 to review the rationale and special demands on mathematical
models for biological pathways and to introduce some of the most
prevalent and representative modeling frameworks. Generally,
model selection and parameter estimation depend on knowledge
about the system, the purpose of the modeling effort, and available
data. If much is known about the details of the mechanisms gov-
erning the biological system, mechanistic formulations, maybe
based on principles of physics, are often a good choice. By contrast,
if details are lacking, it has been shown that canonical models, such
as Lotka–Volterra models and models within Biochemical Systems
Theory (BST) are very advantageous for the purposes of mathemat-
ical modeling in biological systems. Pertinent details of canonical
models will be reviewed in Section 2.3.3.

The development of parameter estimation methods is driven by
the availability of experimental data. Different types of data re-
quire distinctly different classes of methods. Conversely, the vari-
ous estimation methods require different types of data. As a
pertinent example, data for metabolic pathway models have tradi-
tionally characterized the kinetic properties of individual enzymes
catalyzing particular steps within a metabolic pathway of interest.
The generation of this information occurred hand in hand with the
concepts and terminology of enzyme kinetics and the data were
measured specifically to parameterize models in familiar formats
such as Michaelis–Menten or Hill rate laws. The strategy of using
these types of ‘local’ descriptions of model components (one enzy-
matic process at a time) and merging them into a much more com-
prehensive, dynamical pathway model is referred to as ‘bottom-up’
or ‘forward’ modeling and will be discussed in Section 3.

Steady-state data may also be used in parameter estimation.
These data characterize a metabolic system under conditions
where all concentrations have reached constant levels and all
fluxes are in balance. Specifically, this type of steady-state analysis
is either based on stoichiometric analysis or on experiments that
measure the responses of a biological system after a small pertur-
bation around the steady state. Some of these methods will also be
discussed in Section 3.

Recent innovations in biological technology enable us to tackle
the parameter estimation task in an entirely different, more com-
prehensive manner, using a ‘top-down’ or ‘inverse’ approach. The
biological tools for these purposes are geared toward generating
time series data or ‘global’ data of genes, proteins, or metabolites,
sometimes under different sets of conditions, such as initial con-
centrations, or upon various gene knock-outs or the inhibition of
specific enzymatic steps. Inverse methods are very appealing, be-
cause they provide measurements on cellular or organismal sys-
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tems in a larger context. In particular, if the data are generated
in vivo and with only minimal disturbance of the biological system,
the insights gained are considered to be as close to reality as is
presently possible and potentially much more valuable than data
obtained from experiments performed in an artificial in vitro set-
ting. Details and features of traditional and newly developed tech-
niques with respect to parameter estimation will also be addressed
in Section 3.

The potentially high rewards of the inverse modeling approach
have motivated scientists from different backgrounds and from all
over the world to dedicate considerable effort to the many chal-
lenges that must be overcome to make the approach useful. For
BST models alone, about one hundred articles and numerous pro-
ceedings and book chapters describing computational methods
for inverse tasks have appeared within the past decade. We ad-
dress the specific challenges and requirements of inverse modeling
in Section 3.4, along with different types of support algorithms.
Many of the pertinent methods target the main problem of opti-
mizing parameter values against the observed time series data.
Others suggest strategies for circumventing the costly integration
of differential equations, smoothing noisy data, estimating slopes,
constraining the parameter search space, or reducing the complex-
ity of the inference task. These auxiliary methods and algorithms
will be reviewed in Section 4. The primary focus will be on meth-
ods applicable to models within BST, but we will also discuss re-
lated issues that are of interest to other modeling approaches.

The earlier discussion of the second modeling phase (see Fig. 1)
mentioned that the true topology of a biological system is some-
times not fully understood or obscure. In such a case, parameter
estimation is much more complicated, because it is a priori not
clear how to formulate an ill-characterized biological system
mathematically. As we will discuss, the use of concept maps [1]
and of canonical models is of great help in this situation, because
it converts the task of identifying the uncertain structure and reg-
ulation of the biological system into a parameter estimation task.
Generally, structure identification tasks are much more difficult
than parameter estimation, which is already very challenging.
Canonical models render both tasks reachable. In particular, one
should note that there is no clear boundary between parameter
estimation and structure identification if canonical models are
used. Section 5 will introduce some of the most relevant structure
identification methods, namely the determination of the Jacobian
matrix, direct observations, correlation-based approaches, ‘sim-
ple-to-general’ and ‘general-to-specific’ modeling, and specially
tailored time series data analysis within the framework of BST.

Among all parameter estimation or structure identification
methods proposed so far, no single method has risen to the top
and can be declared the clear winner in terms of efficiency, robust-
ness and reliability for the majority of realistic case studies. How-
ever, it seems that a combination of methods may be useful in a
large number of cases. To make inverse modeling more effective
and translucent, we propose in Section 6 an operational ‘work-
flow’ that guides the user through the various steps of the estima-
tion process, identifies possible problem areas, and suggests prom-
ising solutions based on the specific characteristics of the various
available algorithms. An interesting consequence, and actually an
advantage, of the combined approach is the general result that
the optimized solution often consists of multiple, distinctly differ-
ent parameter sets that are all consistent with the data and that
can lead to novel hypotheses for further theoretical and experi-
mental investigation.

Biological systems consist of many organizational layers includ-
ing genetic, transcriptomic, proteomic, and metabolic levels, as
well as phenomena of cell physiology, cell communication, tissue
and organ function, populations, and ecology. In this review, we fo-
cus primarily on model construction at the genomic and metabolic
levels, although many of the computational methods are indepen-
dent of a particular application. The main reason is that the geno-
mic and metabolic levels are currently best supported by available
quantitative data. Metabolic time profiles are particularly well sui-
ted because of the stoichiometric property of metabolic pathways,
which creates natural constraints on possible parameter combina-
tions, and because its main drivers, namely metabolic concentra-
tions and fluxes, can be measured, at least in principle. In
contrast, no material flow is involved in gene–gene, gene–protein,
or protein–protein interactions, and the measurable effects are
seen in their consequences rather than in characteristics of the pro-
cesses themselves. Therefore, gene and protein networks must of-
ten be studied with coarser methods than metabolic systems, such
as graph theory and Boolean or Bayesian methods, which are ap-
plied under the simplifying assumption of binary on/off states.
Nevertheless, recent methodological developments have enabled
the generation of some dynamic profiles of gene networks, and
these have been used for the quantitative identification of gene
regulatory networks, primarily by several Japanese groups (see
Section 2.3.4). Dynamic data on protein levels are still very rare,
and quantitative time series responses are very difficult to obtain.
Commensurate with the availability of data, we will primarily fo-
cus on the construction and analysis of metabolic pathway models
but also discuss issues related to gene interaction networks.

Because the material in this review discusses numerous com-
plementary aspects of parameter estimation and structure identifi-
cation, it seems useful to summarize the structure of the review in
the form of a roadmap, which is given in Table 1.
2. Modeling approaches

2.1. Model requirements

Mathematical modeling and control theory have a long history
in physics and engineering. However, the demands and specific
requirements in modeling biological systems are quite different
and necessitate the adaptation and extension of former methods,
as well as the development of novel, additional tools that are opti-
mally suited for modeling biological phenomena. The peculiarities
of biological system modeling can be generally described by five
aspects (e.g., [2]). First, the biological processes and interactions
are highly nonlinear and complex. Thus, a mathematical structure
is needed that can capture nonlinearities and does not a priori ex-
clude relevant biological phenomena, such as stable oscillations.
Second, dynamic responses of biological systems are particularly
interesting. Therefore, a suitable mathematical model will have
to be time dependent, which almost always requires formulation
as a set of differential equations. Third, real biological systems
are usually composed of different levels of components and inter-
actions with relatively large numbers, which require the ability of a
mathematical framework to scale up to increasingly larger biolog-
ical models. Fourth, biological systems may have stochastic fea-
tures when there are only few molecules involved. Under this
condition, the fundamental laws of kinetics and thermodynamics
are no longer directly applicable and the biological behavior be-
comes difficult to predict. Thus, in addition to grasping a determin-
istic phenomenon, the mathematical model should also be able to
capture stochastic behaviors when these dominate the process.
And fifth, biological reactions rarely happen in a homogeneous
environment but are often restricted to surfaces, channels, organ-
elles or compartments. This feature is sometimes important, and
therefore the ability of handling spatial processes is necessary for
a comprehensive mathematical analysis. It might be added to this
list that many biological phenomena evolve over distinctly differ-
ent time scales and are controlled from different levels of organiza-
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tion. Furthermore, continuous trends are often affected by discrete
events, such as the sudden activation of a gene, and by events that
lie in the past and cause a delayed effect [3]. At this point, no the-
oretical or computational frameworks exist to deal with all these
aspects. For specific cases, ad hoc models may be developed in gen-
eral purpose software like MatLab or Mathematica, or one might
use hybrid methods [4,5], or agent based approaches [6], which
however are computationally expensive.

While stochastic, spatial, and time scale effects are known to
exist in biological systems, it is often possible to use approxima-
tions that greatly simplify model design and analysis. The validity
of such approximations needs to be determined on a case-by-case
basis. If the approximations are indeed valid, they often lead to
simplified system representations based on ordinary differential
equations. The generic format for such a representation may be
written as

_Xi ¼ Vþi � V�i ¼ Vþi ðX1; . . . ;XnÞ � V�i ðX1; . . . ;XnÞ; i ¼ 1; . . . ;n;

ð1Þ

where Xi denotes the concentration or amount of a variable or var-
iable pool and n is the total number of time dependent variables in
the system. The functions Vþi and V�i represent reactions or fluxes
entering or leaving the quantity Xi. This general framework can be
recast in numerous alternative ways and only becomes meaningful
and specific when the functions Vþi and V�i are mathematically de-
fined and parameterized. In the following sections we will briefly
review some particularly relevant implementations in the context
of metabolic pathway analyses and dynamic models of gene regula-
tory systems.

2.2. Stoichiometric pathway models

Mathematical models describing metabolic pathways can be
constructed with a focus either on stoichiometry or kinetics. The
stoichiometric property of a pathway is typically considered time
invariant, while kinetic aspects are used to capture the dynamics
of a system and are driven by the state of the system and may
change rather quickly. The stoichiometry of a pathway system
determines the wiring diagram of the pathway and describes
which fluxes enter or leave which pool and enforces that no mass
is gained or lost in the process. The translation of this topological
wiring diagram into a matrix equation is straightforward. The
resulting stoichiometric matrix contains positive, negative or zero
elements that represent which metabolites are converted into
which other metabolites. The sign represents the direction of
material flow and indicates whether the reaction increases or de-
creases the concentration of a given metabolite pool. If a metabo-
lite and a reaction are unrelated, the corresponding element is
zero. The value of each element in the matrix indicates the stoichi-
ometric relationship and must be an integer. For instance, if one
substrate molecule breaks down into two product molecules, the
gain in product is coded as +2.

The stoichiometric matrix N is the core of stoichiometric mod-
els that show how metabolite concentrations change over time. A
differential equation is formulated as

dS
dt
¼ N � v; ð2Þ

where S is a vector of metabolite concentrations and v is a vector of
fluxes. Detailed descriptions of stoichiometric models can be found
in numerous journal articles and books (e.g., [7–10]).

The main application of stoichiometric models is the determi-
nation of flux rates. Estimation methods for this purpose depend
on the type of available experimental data. In most analyses, stoi-
chiometric models are studied for metabolic systems in a steady
state where, for all pools, the material flow into the pool equals
the material flow out of the pool and all flux rates are constant. Un-
der this assumption, the left-hand sides of the equations in Eq. (2)
become zero and the system of differential equations turns into a
set of linear algebraic equations. If the stoichiometric matrix is full
rank, it is straightforward to calculate the fluxes. However, usually
there are more unknown fluxes than equations, so that the system
of linear equations is underdetermined. Stoichiometric analysis is
most often applied to microbial systems, where it is assumed that
the microbes tend to optimize their growth rate. This assumption
can be formulated as an objective to maximize the availability of
nutrients needed for growth. Representing this objective with a
linear function transforms the underdetermined stoichiometric
system into a linear programming task, which is easily solved even
for large systems. Mass conservation and stoichiometry are dis-
tinctive properties of metabolic pathways and not applicable to
the dynamics of gene regulatory or proteomic networks.

Flux balance analysis (FBA) inherits the properties of the stoichi-
ometric approach but additionally imposes physical and chemical
constraints to find the feasible or optimal distribution of fluxes
[11]. For instance, it is possible to account for thermodynamic lim-
itations. The background of FBA is reviewed in Palsson [9] and rep-
resentative developments of variations are summarized in
Kauffman et al. [12]. The modeling process in FBA consists of sys-
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tem identification, mass balancing, defining measurable fluxes, and
optimization. System identification consists of setting up the stoi-
chiometric equation and relevant constraints. Mass balance is the
application of stoichiometry and conservation of mass. For instance,
the total number of moles of carbon in the system is conserved dur-
ing the time of reaction. By accounting for all material flows enter-
ing and leaving each metabolite pool in the pathway, one can
determine the material distribution and also identify flows that
might have been unknown or difficult to measure in experiments.
As in stoichiometric analysis, the optimization step assumes an
objective such as maximization of growth rate or product yield that
permits solutions through linear programming. The main advan-
tage of both the stoichiometric model and FBA is the linearity of
their matrix representation at the steady state, which tremen-
dously simplifies the analysis, since there are numerous well-estab-
lished methods of linear algebra that are directly applicable. Several
examples have demonstrated that FBA is capable of assessing the
theoretical capabilities and operative modes of metabolic systems
in the absence of kinetic information (cf. [9,13–16]).

Stoichiometric models are sometimes studied under a pseudo-
steady-state (PSS) assumption in cases where the concentrations
of metabolites rapidly adjust to new levels [17–19]. This PSS
approximation was shown to be valid for most intracellular metab-
olites [20]. Under this assumption, it is reasonable to neglect the
instantaneous changes of metabolites and set the rate of change
to zero.

When complete time courses of metabolites are available, the
flux distribution at each time point can be determined with [20]
or without [21] the PSS assumption. Distinctly different from the
standard application of stoichiometric analysis, where only stea-
dy-state data are used, the dynamic changes in metabolite concen-
trations in the latter case are not necessary zero and can be used to
gain incomparably deeper insight into the pathway at hand [21].

Mahadevan and co-workers [22] extended traditional FBA to ac-
count for dynamics and presented two different formulations: the
dynamic optimization approach (DOA) and the static optimization
approach (SOA). DOA involves optimization over the entire time
period of interest to obtain time profiles of fluxes and metabolite
levels. SOA involves dividing the batch time into several time inter-
vals and solving the instantaneous optimization problem at the
beginning of each time interval. By testing the methods in the anal-
ysis of diauxic growth in Escherichia coli, the authors concluded
that SOA was computationally simpler to implement provided all
of the constraints were linear, whereas DOA was more flexible
and suitable for the incorporation of experimental data.

Utilization of the stoichiometric property together with dy-
namic changes in metabolites is a valuable option for studying flux
distributions in metabolic pathways. However, the main advantage
of the standard stoichiometric approach, namely linearity at the
Fig. 2. Traditional models used in metabolic systems analysis. Stoichiometric models focu
kinetic models are able to describe the dynamics of the metabolic pathway.
steady state, is at the same time its most severe limitation. Specif-
ically, this approach focuses almost exclusively on the connectivity
structure of the system and the flux distribution at steady state,
but does not account for kinetic features, which often are necessar-
ily nonlinear. Therefore, the predictive power of linear stoichiome-
tric models, while successful in many cases, is also limited because
regulatory signals and other nonlinear dynamic interactions can-
not be included in the model without destroying its linear struc-
ture. As a compromise, Palsson and others (e.g., [23]) introduced
binary-valued regulatory matrices that are multiplied to the stoi-
chiometric matrix and determine whether a given flux is activated
or not. However, a full account of nonlinear regulatory features re-
quires the formulation of a pathway system as a kinetic model.

2.3. Kinetic models of pathway steps

When detailed information is available about the kinetics of the
metabolic reactions in the pathway, it is possible to describe its
dynamics by incorporating kinetic features in the flux representa-
tions v of the general stoichiometric models in Eq. (2) [24]. The cru-
cial step toward combining the stoichiometric property with
kinetic features is to search for appropriate functional forms to rep-
resent the flux quantities Vþi and V�i in Eq. (1), which then translate
into representations of the vector v. Approaches for this purpose
can be categorized into three categories (see Fig. 2): (1) mechanis-
tically based functions (e.g., law of mass action, Michaelis–Menten
rate law); (2) ad hoc approaches; and (3) different types of canon-
ical models (e.g., BST and lin-log representations). Details of these
representations are reviewed in the following sections.

2.3.1. Mechanistically based functions
2.3.1.1. Mass action systems. Models based on the law of mass ac-
tion are typically used to describe reaction networks consisting
of elementary reactions. The rate of a given elementary chemical
reaction is proportional to the product of concentrations of all vari-
ables reacting in the elementary process, including their moieties,
and is generally formulated as the basis function

v ¼ k
Yn

g¼1

Xgi
i ; i ¼ 1;2; . . . ;n; ð3Þ

where k is the rate constant, which is always positive, and gi are ki-
netic orders which are non-negative integer numbers that reflect
the numbers of molecules involved in the reaction. The main advan-
tage of models based on the law of mass action is that they can be
determined directly from the elemental reactions and their stoichi-
ometry. The drawback is that most biochemical reactions are not
elemental but catalyzed by enzymes, and therefore composites of
several elementary reactions [25]. It is inconvenient and indeed
s on the connectivity of the biological system. By incorporating kinetic information,
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infeasible to carry all these reactions along and much easier instead
to develop composite rate functions. Furthermore, the underlying
mechanisms of an enzyme catalyzed reaction are not always under-
stood in sufficient detail or they are experimentally inaccessible.
Therefore, mass action equations are difficult to set up and param-
eterize for complex pathway systems.

2.3.1.2. Michaelis–Menten and similar rate laws. The Michaelis–
Menten rate law (MMRL) [26] and its variations are among the
most commonly used representations for kinetic modeling in met-
abolic pathway analysis. MMRL is based on the concept that a sub-
strate and an enzyme form a transient complex which either
dissolves to return the two or leads to the formation of a product
and the release of the enzyme. The modeling of enzyme reactions
in this approach is simplified considerably under the quasi-steady-
state assumption, which states that the intermediate complex does
not change appreciably over time. Even though Michaelis–Menten
rate laws are often straightforward to set up, complete descriptions
of more complex enzyme mechanisms may become massive if sev-
eral substrates or reactions are involved [25]. As the result, math-
ematical analyses become very complex and the parameter
estimation requires an undue amount of experimental data
[27,28]. In addition to technical issues, the model results are diffi-
cult to interpret in terms of the underlying biological system
[28,29]. The estimation of parameter values in pure MMRL is easy
and may even be accomplished with methods of linear regression
[30]. However, this simplicity vanishes for larger systems of
MMRLs and their generalizations.

2.3.2. Ad hoc modeling approaches
When the detailed mechanisms of a biological process are un-

known or unclear, an alternative approach is to adapt a mathemat-
ical model from a different context, quasi as a black box model, to
describe the biological phenomenon of interest. As a typical exam-
ple, Voit and Sands [31] reviewed a collection of mathematical
models for the uptake of nutrients by tree roots, most of which
had no foundation in plant physiology but were expected to fit ob-
served trends sufficiently well. Although such an ad hoc black-box
approach might provide models that fit the observed data, it is
highly arbitrary and poses several intrinsic problems. For instance,
one must question the validity of such a model for other experi-
mental data or extrapolations to un-tested experimental condi-
tions and anticipate problems with interpretations of results,
comparisons of results with those from alternative models, and
extensions to more refined models. Furthermore, the estimation
of model parameters may become problematic, because they do
not necessarily correspond to measurable quantities. In many
cases, a better option than an ad hoc model is a canonical model.

2.3.3. Canonical models
The predictive ability of stoichiometric models is limited be-

cause nonlinearities due to regulation cannot directly be accounted
for. For improved models that permit nonlinearities, kinetic infor-
mation of the pathway is needed. A good compromise that is
capable of capturing nonlinear dynamics while keeping the math-
ematics relatively simple is the use of a ‘canonical’ nonlinear model
whose structure is fixed and whose individuality comes from its
parameter values. In addition to their homogeneous structures,
canonical models are more or less size independent and facilitate
the development of customized techniques and methods for anal-
ysis, diagnostics, and parameter estimation.

Arguably the most promising canonical nonlinear models in
metabolic modeling are Generalized Mass Action (GMA) and S-sys-
tem structures within Biochemical Systems Theory (BST) [27,32–36].
These models are constructed by approximating fluxes with prod-
ucts of power-law functions, which are mathematically grounded
in the well-established approximation theory of Taylor. In the S-
system formalism, each equation has a particularly simple format:
the change in system variables is given as one set of influxes minus
one set of effluxes (cf. Vþi and V�i in Eq. (1)), and each set is collec-
tively written as one product of power-law functions. Thus, the
generic S-system formulation reads

_Xi ¼ ai

Yn

j¼1

X
gij

j � bi

Yn

j¼1

X
hij

j ; i ¼ 1;2; . . . ;n; ð4Þ

where Xi represents a time-dependent variable (metabolite) and n
denotes the number of variables in the system. The non-negative
multipliers ai and bi are rate constants which quantify the turnover
rate of the production or degradation, respectively. The real num-
bers gij and hij are kinetic orders that reflect the strengths of the ef-
fects that the corresponding variables Xj have on a given flux term.
A positive value signifies an activating or augmenting effect exerted
by Xj, a negative value signifies an inhibitory effect. A kinetic order
of zero implies that the corresponding variable Xj does not have any
effect on a given flux. In some instances, m independent variables,
which are typically constant during each mathematical experiment,
may be included. They do not have their own equations but enter
the power-law terms just like dependent variables, so that the
products run from 1 to n + m.

In the GMA formalism, instead of aggregating all influxes and all
effluxes into one term each, all influxes and effluxes are approxi-
mated individually with power-law terms such that

_Xi ¼
Xki

k¼1

�cik

Yn

j¼1

X
fikj

j

 !
; i ¼ 1;2; . . . ;n; ð5Þ

where the rate constants cik are non-negative and the kinetic orders
fikj may have any real values as in the S-system form. Also as before,
independent variables may be included. It should be noted that dif-
ferences between these two formulations only exist at branch
points, whereas all other steps are identical. One should also note
that S-systems permit parameter estimation methods [37], which
are not directly applicable to GMA systems, as we will discuss later.

BST models have a number of important advantages which have
been discussed in detail elsewhere [27,32,33,35,36]. Four are par-
ticularly crucial here. First, these systems are rich enough in struc-
ture to capture virtually any nonlinearity including complex
oscillations and chaos [38,39]. Second, symbolic BST models can
be set up without mechanistic information on the underlying sys-
tem, but if information is available, it can be used to simplify the
symbolic representation. Third, the highly structured format facil-
itates mathematical and numerical analyses. These analyses in-
clude computations associated with steady states, sensitivity,
stability, as well as dynamic features. Fourth, BST models are char-
acterized by a one-to-one relationship between parameters and
structural features. Thus, if structural features are known, it is
explicitly clear where they will appear in the BST models. Con-
versely, if a parameter has been identified, its interpretation in
terms of structural properties is immediate. This feature is espe-
cially crucial for structure identification and parameter estimation
of metabolic models. The reasons will be discussed in detail in Sec-
tion 4.4. The power-law models of BST were initially used to model
metabolic pathways and gene circuits, but this formalism has also
proven very beneficial for modeling other classes of biological sys-
tems, including genetic networks, immune networks, multi-level
systems, and cell signaling [40–45].

An alternative canonical form is the ‘lin-log approximation’
which was introduced by Hatzimanikatis and Bailey [46] and ex-
panded by Visser and Heijnen [47]. This form is based on taking
the logarithm of each metabolite concentration and enzyme activity
in relationship to a corresponding reference value. The lin-log model
constitutes an extension of Metabolic Control Analysis (MCA), a the-
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oretical framework for analyzing control and regulation in meta-
bolic networks close to their steady state [29,48,49]. For small vari-
ations about a steady state, BST and lin-log models show similar
responses. However, they differ for larger variations [50–52].

Another recently proposed canonical form is the Saturable and
Cooperative Formalism (SC formalism) [53], which is based on Tay-
lor approximation in a special transformation space that is defined
by logarithms of power-inverses. The SC formalism exhibits im-
proved cooperativity and saturation in comparison to other canon-
ical formalisms. In addition, the SC formalism is expected to be
accurate over a wider range around the operating point if the
approximated functions are saturated. The main drawback of the
SC formalism is its need for a much larger number of parameters,
which on one hand bestow SC models with higher flexibility but
on the other hand require increased estimation efforts.

For completeness, we should mention Lotka–Volterra (LV) mod-
els and their generalizations [54–57]. These models are canonical
in the sense of the models discussed before and have found very
many applications in ecology. In fact, they are very flexible in
structure and, with sufficiently many variables, can model any
nonlinearities that can be expressed as ordinary differential equa-
tions, just like BST models [38,58,59].

The generic LV format is

_Xi ¼ Xi � ai0 þ
Xn

j¼1

aijXj

 !
ð6Þ

where the coefficients aij are real numbers. In other words, the ith
equation contains one term that is linear in the variable itself and
a product of the variable with another system variable. While this
format is very useful in ecological systems analysis, it is less so in
metabolic systems. For instance, it does not allow the direct formu-
lation of an un-modulated precursor–product relationship, because
the ith equation cannot contain a term of the form kXi�1.

The choice of an S-system, GMA, lin-log, or SC model depends
on the available input information and the purposes of the in-
tended model. For instance, GMA systems are natural extensions
of stoichiometric models that incorporate kinetic information
using a power-law approximation and are closer to biochemical
intuition than S-systems. However, the GMA format, as well as
the SC format, does not allow the algebraic calculation of steady
states, which is important for a number of analyses. The lin-log
model shares the intuitive advantage with the GMA format and,
like the S-system format, allows algebraic steady-state calcula-
tions. However, it cannot represent certain nonlinear behaviors
since its structure is essentially linear [60]. Also, the lin-log
approximation results in substantial errors for substrate values
close to zero [50,52] and may lead to negative rates if the substrate
concentration is low, whereas the BST representations become
more inaccurate for very high substrate concentrations. As local
approximations, all these formats perform similarly as long as
the system variables do not deviate too much from some chosen
state where they coincide.

2.3.4. Dynamic models of gene regulatory networks
The previous sections reviewed representative modeling strate-

gies for metabolic pathway systems and suggested that power-law
models are particularly useful in this context. The same power-law
formalism is also beneficial for modeling gene regulatory systems,
although there are other distinct alternatives (for a review, see e.g.,
[61]). Mathematically the simplest representations are linear; they
typically capture the structure of the network with a connectivity
graph and its associated connectivity matrix (e.g., [61–63]). The
graph is modeled as static, that is, as time invariant, and allows
classifications of the particular type of the network (e.g., ‘randomly
connected,’ ‘hub and spoke,’ or ‘small world’), as well as analyses of
the robustness to different types of perturbations (e.g., [64]). A dif-
ferent modeling strategy is based on Boolean networks, in which
each gene is either turned on or off, and whose discrete dynamics
is governed by rules that recursively determine the expression
state of a gene during the transition from one time point to the
next (e.g., [65]). Gene networks may also be analyzed with Bayes-
ian methods that assess the probability of a gene being affected by
other genes (e.g., [66,67]).

Of particular interest here are models that trace the full dynamics
of gene networks with ODE models. While many alternatives could
be used as base models, many researchers have resorted to the de-
fault of S-system models, because these do not require knowledge
of the precise mechanisms that govern the regulation network.
The study of gene regulatory networks with S-systems has a long
history, which began with the pioneering work of Savageau [68]. Sci-
entists had been observing many types of gene circuitry and Sava-
geau and his collaborators tried to answer questions such as: Is
each type of circuitry organized in a manner that is optimized within
its context or is the mode of regulation a coincidence? Can gene reg-
ulatory circuits be classified into types that are predictable from the
organism’s surroundings (e.g., activation versus repression, positive
versus negative control)? Is it possible to deduce the functionality of
a given circuitry from its particular organization? Is it possible to in-
fer general ‘design principles’ for the modes of regulation from the
analysis of alternative gene circuitries? Is it possible to implement
these principles and ‘synthesize’ gene circuits de novo in order to
achieve prescribed biological responses (cf. [40,69,70])? To answer
these questions, Savageau and others dedicated significant effort
to studying gene regulatory circuits with techniques of canonical
modeling and the method of controlled mathematical comparisons
(e.g., [43–45,71–74]). A particularly intriguing result was the con-
ceptual framework of demand theory (e.g., [75–80]), which indeed
tied types of gene regulation to environmental demands and thus re-
vealed natural design principles.

One of the models used to analyze gene circuits [72] has be-
come a benchmark system for inverse methods (see Table 3). In
addition, Maki et al. [81] proposed a network of 30 genes (see also
Kimura et al. [82] and Kutalik et al. [83]), which is artificial but was
inspired by realistic gene networks, for testing the performance of
algorithms on larger systems. In a similar vein, Kutalik et al. [83]
created an artificial network of 7 genes.

3. Kinetic model construction

The collection of input information and the choice of a mathe-
matical model framework result in a symbolic model which is typ-
ically in the form of ordinary equations, as discussed before. The
next step is to assign numerical values to all parameters in the
model. There is no unique recipe for this task of parameter estima-
tion. In fact, the estimation problem is almost always complicated
and continues to be the bottleneck of biomathematical modeling.

In this section, we review the classes of parameter estimation
methods that are in current use, namely, forward (bottom-up) ap-
proaches, estimation from steady-state data, and inverse (top-
down) modeling using time-series data. The nature of suitable data
for each type of estimation is distinctly different, and so are the
methods of analysis. Ideally, rich and diverse data will allow the
use of several methods that complement each other or a combined
strategy that has much greater potential leading to suitable models
than either approach by itself [1,84–86].

3.1. Forward or bottom-up modeling

Before high-throughput data were available, essentially all met-
abolic models were developed from ‘local’ kinetic information of
biochemical or physiological responses, which had been obtained
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in the traditional reductionist manner. Typically, biologists around
the world worked on characterizing one particular enzyme or
transport step at a time. They purified the enzyme, studied its char-
acteristics, determined optimal temperature and pH ranges, and
quantified cofactors, modulators, and secondary substrates. Iso-
lated from these laboratory experiments, modelers converted this
information into alleged mathematical rate laws. Once enough
information had been collected for most steps in the pathway,
the modeler attempted to merge this information into an integra-
tive mathematical model. This type of model construction has been
benefiting greatly from databases like KEGG [87,88], MetaCyc [89],
and Brenda [90], which contain large collections of pathway topol-
ogies and kinetic parameters retrieved from literature sources. In
many cases, the integration into a viable model does not succeed
at first and requires revisiting assumptions and parameters, or
even the search for additional experimental data.

If done right, this ‘forward’ or ‘bottom-up’ process leads to a mod-
el representation of the pathway that exhibits the same features as
reality, at least qualitatively, if not quantitatively. Case studies that
used this forward estimation approach in BST successfully include:
the TCA cycle in Dictyostelium discoideum [91]; the citric acid cycle
[92,93]; fermentation in Saccharomyces cerevisiae [94–96]; purine
metabolism [97–99]; the Maillard-glyoxylase network with forma-
tion of advanced glycation end products [100]; the ferredoxin
system with information from protein structure for model identifi-
cation [101]; and sphingolipid metabolism in Saccharomyces cerevi-
siae [102–104]. In almost all of these cases, the strategy consisted of
setting up a symbolic model, estimating local parameters, studying
the integration of all individual rate laws into a comprehensive mod-
el, testing the model, and making refinements to some of the model
structure and the parameter values in an iterative fashion.

While theoretically straightforward, there are several disadvan-
tages of this approach. The main issue is that a considerable
amount of local kinetic information is needed and that this infor-
mation is often only available from different organisms, different
species, or experimental performed under different conditions. As
a consequence, more often than not the ‘integrated result’ is not
consistent with biological observations. Furthermore, this process
of construction and repeated refinement is very labor intensive
and requires a combination of biological and computational exper-
tise that is still rare.

3.2. Model retrieval from steady-state data

By far the most model estimations from steady-state data have
been performed in the context of stoichiometric and flux balance
analysis, as discussed before. Specifically, fluxes entering and leav-
ing a metabolic system were measured under the assumption of
complete metabolite and flux balancing, and internal flux rates
were inferred from the assumed stoichiometric models and the
maximization of growth rate per linear algebra and linear pro-
gramming. Examples are plentiful (cf. [9,10]).

Using concepts of stoichiometry in a slightly different fashion,
Wiechert and others developed isotopomer and cumomer methods
for flux rate estimation using radioactive labeling techniques [105–
108]. The technique is based on the fact that specifically labeled
atoms in an input molecule, such as 1-13C-glucose, have known
metabolic fates. By letting the system resume steady state after
the labeled input, the distribution and positioning of label among
the metabolites of the entire pathway provides clues of internal
flux rates. The original steady-state estimation methods based on
positional labeling were later extended to characterize the tran-
sients between input and steady state [109,110].

A distinctly different type of parameter estimation from steady-
state data uses responses of a biochemical system to (infinitesi-
mally) small perturbations around the steady state. Two types of
approaches may be taken. First, parameter values can be obtained,
at least in principle, by direct experimental measurements of how
a variable affects the fluxes entering and leaving the metabolite pool
[33,48,111]. Suppose the flux rate and metabolite concentrations in
steady state of one particular biochemical process are known. One
can then slightly alter the concentration of a variable systematically
while keeping the other variables constant. The result of these exper-
iments can be plotted as flux rate versus metabolite concentrations
in logarithmic coordinates [33]. In the case of power-law systems,
the kinetic order of the investigated variable corresponds to the
slope of the plotted line and is obtained by linear regression (e.g.,
[35,103]). Under ideal circumstances, sufficient experimental mea-
surements can be collected to allow the regression analysis. How-
ever, the data usually contain noise and consist of only a few
measurements, which make the regression rather susceptible to
experimental uncertainties. As an alternative, parameter values
can be estimated by experimental measurements of logarithmic
gains (e.g., [111,112]). This approach is based on perturbing variables
in the interesting portion of the pathway and recording the corre-
sponding changes after perturbations. The information about mod-
ulation, including flux rates and concentrations, is collected to
calculate the kinetic orders. Additional methods that have some sim-
ilarity to these steady-state estimations are discussed in Section
5.1.1.

3.3. Inverse or top-down modeling

While steady-state measurements or simple perturbation
experiments around the steady-state can effectively be used for
an estimation of flux rates, incomparably more information about
the system is contained in measurements of metabolite concentra-
tions at sequential points in time that may include wider devia-
tions from the steady state. Modern high-throughput techniques
of biology are capable of producing these types of time series data,
and they have begun to render distinctly different options for mod-
eling metabolic systems possible. Because this type of estimation
begins with comprehensive data at the level of intact systems
and leads to inferences of parameter values at lower levels of orga-
nization, namely features of individual processes, it is called ‘top-
down’ or ‘inverse.’ The primary experimental tools for measuring
genomic time series data are microarrays and RNA-based gene
silencing (e.g., [61,113]). For proteomic time series, two-dimen-
sional gel electrophoresis and mass spectrometry could be em-
ployed, but technical challenges have kept the number of
proteomic time series analyses small (e.g., [114]). Dynamic metab-
olite concentration profiles are presently obtained with methods of
nuclear magnetic resonance (NMR) (e.g., [115,116]), mass spec-
trometry (MS) (e.g., [117,118]), and high performance liquid chro-
matography (HPLC) (e.g., [119,120]). In contrast to the ‘local’ data
obtained from traditional experiments, the clear advantages of
using ‘global’ data are that the information is collected within
the same organism, obtained under the same experimental condi-
tion, and sometimes even in vivo. Time series data contain enor-
mous information on the structure and regulation of the
biological system they describe. However, this information is
mostly implicit, and it is very challenging to extract it from these
data due to the complexity and nonlinearity of biological networks.
There are several distinct challenges of this approach, some of
which are readily anticipated, while others are surprising and puz-
zling. We describe these challenges in detail in the next section.

3.4. Challenges of the top-down modeling approach and current
solution strategies

The challenges of model identification from time series data
may be the result of biological and/or technical features of the case.
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They generally fall into four categories, namely: data related issues,
model related issues, computational issues, and mathematical is-
sues [85,121,122]. Responding to these challenges, numerous mod-
eling techniques for the analysis of dynamic data have been
proposed. Representative examples are summarized in Table 2
and described below and in later sections.

3.4.1. Data related issues
Biological datasets usually contain noise and measurement er-

rors, and they are seldom complete. Typical scenarios of missing
data points include that the data are sparsely missing, that data
collection is lacking at certain time points, or that entire time series
are missing, either due to technical issues (e.g., the concentration is
below the detection limit) or to the possibility that relevant metab-
olites may be unknown. In simple cases of relatively few missing
points, standard interpolation and smoothing methods may lead
to satisfactory solutions. Many methods are available to address
these tasks; some will be discussed in a later section.

In other cases, data may be missing for entire time courses, yet
qualitative or semi-quantitative information is available. To bridge
this type of gap between specific wet experiments, biological in-
sight and intuition, and the construction of mathematical models,
one may pursue the strategy of concept map modeling, which per-
mits the inclusion of semi-quantitative information on expected
responses of the system based on biological knowledge and intui-
tion [1]. We will further describe the general features of concept
map modeling in Section 7.

Besides missing data points or time series, other data related
problems must be addressed. For instance, a pathway model may
be designed in such a fashion that all mass is accounted for
throughout the experiment. However, if the experimental data
are noisy or incomplete, it is possible that non-negligible amounts
of mass are apparently lost or even gained. This inconsistency may
Table 2
Challenges and current solutions of parameter estimation and structure identification task
cause problems for the estimation of parameter values. We discuss
this issue in more detail in Section 6.2.2.

Even if the time series are complete, they are almost always
noisy. They are also often affected by uncertainties about the par-
ticular experimental conditions at the time of observation. For in-
stance, temperature and pH may affect the reaction mechanism or
speed, but they are not always reported. As far as possible, uncer-
tainties should be taken into account as these can possibly influ-
ence the parameter values and thereby have an impact on the
predictive accuracy of the resulting model.

Other potential problems in the dataset may include that the
time series are non-informative, e.g., consist essentially of constant
time profiles, or that they are collinear, as is the case when some of
the variables are proportional to each other along the entire time
horizon. This collinearity between time series might cause ill-con-
ditioning in the estimation process. The problem should be diag-
nosed beforehand by checking the conditional number or
correlation coefficient of the data, and remedied if possible by
pooling variables or merging essentially constant variables with
the rate constants of the term. We will return to this issue in
Section 7.

At the opposite side of the spectrum of data availability, it may
also happen that data have been measured but that they are dif-
ficult to include in the model. This situation occurs especially
with ‘ubiquitous’ metabolites like ATP and water, which may
clearly affect the dynamics of a metabolic pathway system, but
are involved in so many processes that a comprehensive model
simply cannot be constructed. A possible solution is a ‘partial
modeling’ strategy that permits the mixing of well-defined com-
ponents with components whose dynamics is only known in the
form of time series that are observed but cannot be formulated
in terms of other model components (e.g., [1,122]; see
[82,123,124] for a similar strategy in a different context). As a
s in inverse modeling.
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specific example, we analyzed time series data describing glycol-
ysis and lactate production in Lactococcus lactis [121]. The data
contained ATP and NAD+ concentrations, measured over time,
but it was impossible to formulate the ATP and NAD+ dynamics
as functions of the system variables, because both are involved
in very many reactions, most of which were not modeled. As a
solution, the better-defined components were formulated as dif-
ferential equations in BST, and their dynamics included ATP and
NAD+ as variables. However, ATP and NAD+ were not modeled
as differential equations but as ‘off-line’ data, which entered the
system as time-dependent ‘forcing functions.’

3.4.2. Model related issues
The inverse problem requires a mathematical model that cap-

tures the dynamics of the data in a suitable fashion. However, there
is an unlimited variety of nonlinear structures and mathematical
formulations that could be potential candidates for the optimal
data representation. We have introduced some of the modeling
frameworks and their pros and cons in Section 2. Here we highlight
the specific challenges associated with model selection in top-
down modeling approaches.

It seems that there are good reasons for selecting model formal-
isms that are intended to represent the underlying chemical reac-
tions mechanistically. However, this mechanistic approach is not
always the best choice. The reasons are, first, that high-throughput
time series data are essentially never of sufficient accuracy to dis-
cern among possible underlying reaction mechanisms. Second, the
true mechanisms underlying the data are simply not known. Third,
traditional kinetic rate functions, such as the Michaelis–Menten
rate law, are not necessary the best choice for in vivo data
[125,126]. Instead of trying out a roster of different mechanistic
formulations that could potentially be appropriate, it is often more
efficient to use a generic nonlinear approach in the form of a suit-
able approximation that is based on criteria like: the ability to cap-
ture important mathematical features of a dataset, simplicity of
representing the data, mathematical tractability, and interpretabil-
ity of mathematical results within the biological realm. Canonical
models, as they were described before, are particularly useful for
this purpose.

3.4.3. Computational issues
The estimation process itself is challenging computationally,

especially if the model consists of nonlinear differential equations
[127]. It is no surprise that the difficulties grow with the size and
complexity of the system, which usually translate into increasing
numbers of equations and variables in the model. None of the non-
linear methods are truly straightforward, and even for systems of
modest size, all lead to challenging issues, such as slow algorithmic
progress toward the error minimum, complicated error surfaces,
lack of convergence, or convergence to local minima. Furthermore,
the differential equations need to be integrated during the optimi-
zation process, unless special strategies are employed that explic-
itly avoid this step. The integration may be very time consuming,
especially when the system is stiff, and require 95% or more of
the entire estimation time [128]. Other computational challenges
include the distinction between direct and indirect effects among
system variables, characterization of intermediate steps, time de-
lays, spatial heterogeneity, and stochasticity at the level of the gov-
erning processes or the integrated system.

The actual development of algorithmic methods for extracting
information from biological time series datasets is the subject of
Section 4. The methods for biological inverse problems typically re-
quire a combination of techniques that include techniques for
attacking the main problem of optimizing parameter values, as
well as supporting algorithms, such as methods for circumventing
the costly integration of differential equations, smoothing overly
noisy data, constraining the parameter search space, or reducing
the complexity of the inference task.

3.4.4. Mathematical issues
An often ignored source of problems is a (frequently unknown)

mathematical redundancy in some models. Redundancy may occur
in different manifestations. It is possible that different sets of
parameter values, which fit the experimental data exactly equally
well, are mathematically or numerically equivalent [129]. For in-
stance, if two parameters p and q always enter the equations in
the same combination, such as (p + q), it is not possible to identify
their individual values. In the context of power-law functions, col-
linearity between variables leads to unidentifiability of the corre-
sponding kinetic orders [130,131]. It may also happen that
solutions exhibit similar residual errors, even if they are mathemat-
ically not equivalent. One possible cause is compensation between
a rate constant and the kinetic orders in the power-law terms of a
particular data fit [130,132]. Mathematical redundancies and error
compensation may occur within or between flux descriptions in the
same or among different equations. The task of dealing with math-
ematical and computational redundancies has been addressed in
some articles [130,132,133], but will require more work. A preli-
minary step in the identification of redundancies and their causes
may be our recent method of Dynamic Flux Estimation [21], which
permits unique tools of error diagnostics (see Section 4.5.3).

Despite these challenges, inverse approaches based on in vivo
time series data are certainly worth pursuing, because these data
are the most accurate reflections of what cells and organisms really
do in environments that are as close to reality as is presently pos-
sible to measure. This level of realism is very appealing, and many
researchers have worked on the development of methods that
overcome some of these challenges. A representative set of meth-
ods is described in the following section.
4. Parameter estimation techniques for top-down modeling
approaches

Many of the recently developed techniques for top-down
parameter estimation have been developed for BST models. Most
of them are similarly applicable to other canonical models,
although a few take advantage of the specific form of power laws
in BST. The main algorithms and their representative references
are shown in Figs. 3 and 4. A historic listing of representative algo-
rithms is presented in Table 3.

4.1. Methods based on integrating differential equations

The central component of solving inverse problems is an effi-
cient algorithm for determining optimal estimates. Most standard
methods for this purpose naturally involve the numerical solving
of the differential equations. This solution is computationally very
expensive. As a specific example indicative of the problem at hand,
consider a direct attempt to estimate the parameters of a five-var-
iable S-system model from noise-free time series data with a ge-
netic algorithm [134]. The authors used a cluster of 1040 CPUs,
which ran for �10 hours for each loop of the estimation program.
Needing 7 loops, the entire estimation time thus was roughly
70,000 PC hours. Analyzing this alarming situation, the distinct
tasks within the optimization were clocked in detail with the result
that 95% of the time spent for parameter searches involving differ-
ential equations is used for integrating the equations, while rela-
tively little time is used to compute gradients toward the
optimal estimates [128]. If the equations are stiff, the computation
time may increase to almost 100%, and even if the model is not
stiff, the likelihood is high that some trial solutions during the
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algorithmic process could make it stiff [128]. Therefore, even if effi-
cient, custom-tailored integration methods are used [135], signifi-
cant time savings can be gained by speeding up the evaluation of
differential equations.

Numerical integration of the ODE system can be circumvented
when the differentials are substituted with slopes that are esti-
mated from the time series data at all measured time points. This
substitution entirely eliminates the need to integrate differential
equations, because the parameter estimation is subsequently exe-
cuted on systems of algebraic equations. Furthermore, the equa-
tions become uncoupled so that they can be assessed in parallel
or one at a time. An early implementation of this method was
accomplished by manually estimating slopes from observed time
series data and substituting them for the derivatives in the differ-
ential equations [35,136,137]. Voit and Almeida [128] imple-
mented the slope-estimation-decoupling strategy with an
artificial neural network that simultaneously permitted data
smoothing and the computer-algebraic computation of slopes from
the smoothed time courses.

The slope-estimation-decoupling idea has subsequently been
combined with various methods such as genetic algorithms, simu-
lated annealing, swarm methods, interval analysis, and a number
of hybrid methods. Various slope estimation methods will be re-
viewed in detail in Section 4.2. One drawback of these methods
is that it may not be easy to obtain good measurements or esti-
mates of the slopes if the data are very noisy. However, it is still
advantageous to use this approach, even if the results are coarse,
Fig. 4. Optimization algorithms for inverse modeli
since the coarse estimates may be used as initial guesses for stan-
dard nonlinear optimization methods. Other advantages of the
decoupling approach are reviewed in [128].

In a different implementation of a similar idea, the decoupling
allowed solving and fitting of one differential equation at a time in-
stead of solving the entire system. Maki et al. [123] proposed this
‘step-by-step’ strategy and Kimura et al. [82,124] introduced a sim-
ilar concept called ‘decomposition,’ which dissects a large network
inference problem into many smaller sub-problems. In both meth-
ods, the variables contributing to the single differential equation
being integrated are substituted with the actual observed time ser-
ies data or with smoothed analogues, which are thus used as off-
line inputs to the decoupled system. This approach significantly re-
duced the computation time. For instance, using the same artificial
five-variable datasets that required 70,000 PC hours [134], Kimura
and co-workers ran the algorithm on a single CPU, where it re-
quired only about 59 minutes to optimize each subtask.

A drawback of decoupling and decomposition approaches is
that each subtask is solved independently, a procedure which does
not allow the exchange of information between subtasks. For in-
stance, the variables serving as off-line data in one equation are
actually solved in another equation. Thus, if the value of one vari-
able is updated during optimization, the information should be
incorporated into optimization processes of the other subtask. This
feature is especially important when there is considerable noise.
Kimura et al. [82] proposed to solve the decomposed subtasks
simultaneously using a cooperative coevolution algorithm. Since
ng. Some representative references are listed.



Table 3
Timeline of representative algorithms for inverse problems in BST models.

Authors Year Main methods and features Model Target networks

Artificiala Actualb

Voit and Savageau [136] 1982 � Decoupling S-system (a)
Voit [35] 2000 � Review of various bottom-up and top-down methods S-system

GMA
Seatzu [144] 2000 � Smoothing (B-splines) S-system (b)
Maki et al. [123] 2002 � ‘Step-by-step’ strategy S-system (c)
Kikuchi et al. [134] 2003 � Simple genetic algorithm (SGA) S-system (A)

� Penalty term in the objective function
Kimura et al. [124] 2004 � Decomposition method S-system (A) (B)

� Numerical integration with local linear regression
Voit and Almeida [128] 2004 � Decoupling S-system (C)

� ANN smoothing and slope approximation
Kimura et al. [82] 2005 � Decomposition S-system (A) (B) (d)

� Cooperative coevolution algorithm
Lall and Voit [202] 2005 � ‘Peeling’ technique S-system (e)
Tsai and Wang [140] 2005 � Modified collocation method S-system (A) (D)
Cho et al. [163] 2006 � S-tree based genetic programming (GP) S-system (A) (f) (g)
Chou et al. [37] 2006 � Alternating regression (AR) S-system (A) (E)
Daisuke and Horton [179] 2006 � Distributed genetic algorithm (DGA) S-system (A) (h)

� Use of scale-free property
Kim et al. [194] 2006 � Genetic programming to estimate slopes and avoid numerical integration S-system (E)
Marino and Voit [171] 2006 � Gradual increase in model complexity S-system (C)
Naval et al. [201] 2006 � Particle swarm optimization (PSO) S-system (C)

GMA (i)
Polisetty et al. [203] 2006 � Branch-and-reduce strategy GMA (F) (i)
Tucker and Moulton [155] 2006 � Interval analysis S-system (A) (E) (G)
Gonzalez et al. [197] 2007 � Simulated annealing (SA) S-system (C) (j)
Kutalik et al. [83] 2007 � Newton-flow method S-system (B) (E) (H) (I)
Marin-Sanguino et al. [248] 2007 � GMA optimizer GMA (i) (k)

� Geometric programming
Noman and Iba [189] 2007 � Information criteria-based fitness evaluation S-system (A) (J) (l)

� Differential evolution (DE) along with local search heuristics
Tucker et al. [156] 2007 � Constraint propagation S-system (E)

GMA (K)
Goel et al. [21] 2008 � Dynamic flux estimation (DFE) GMA (m)
Liu and Wang [164] 2008 � Multi-objective optimization S-system (A) (B) (n) (o) (p)
Vilela et al. [159] 2008 � Eigenvector optimization (EO) S-system (A) (E) (H)

(L)
Zuñiga et al. [199] 2008 � Ant colony optimization (ACO) S-system

� Enhanced aggregation pheromone system (eAPS)

a The artificial target networks used in the representative algorithms are: (A) Five-variable gene regulatory network [72]; (B) Thirty-variable system [81]; (C) Five-variable
didactic system (four dependent variables and one independent variable) [128]; (D) Three-variable cascaded system [140]; (E) Four-variable didactic system (similar pathway
as model (C) but without independent variables) [37]; (F) Four-variable branched pathway with several feedback inhibitions (three dependent variables and one independent
variable) [35]; (G) Three-variable cascaded pathway [35]; (H) Two-variable system [83]; (I) Seven-variable system [83]; (J) Twenty-variable system [189]; (K) Three-variable
branched pathway with several feedback inhibition signals (similar pathway as model (F) but without independent variables) [35]; (L) Ten-variable system ([159]).

b The real networks used in the representative algorithms are: (a) Four-variable model of ethanol production by yeast [136]; (b) Five-variable forest growth model (four
dependent variables and one independent variable) [31]; (c) Gene expression profiles during neural differentiation of P19 EC cells measured with mouse cDNA microarrays
representing 15,000 genes [123]; (d) cDNA microarray data of Thermus thermophilus HB8 strains [82]; (e) NMR data from the L. lactis glycolysis pathway (model described in
[202]; experimental data from [115,249,250]); (f) Anaerobic fermentation pathway in Saccharomyces cerevisiae (five dependent variables and eight independent variables)
[251]; (g) SOS DNA repair system in E. coli [252]; (h) Gene expression profiles of mice (data selected from GDS404 in NCBI [253]) [179]; (i) Anaerobic fermentation pathway in
Saccharomyces cerevisiae (same pathway as in model (f) but GMA model) [95]; (j) cadBA in E. coli [254]; (k) Tryptophan operon model in E. coli [255]; (l) Yeast cell-cycle
microarray data [256]; (m) NMR data from the L. lactis glycolysis pathway [257] (same pathway as pathway (e) but GMA model [21]); (n) Kinetic model of ethanol
fermentation [258]; (o) Circadian oscillations of period proteins in drosophila [259]; (p) Embryonic gene regulatory network in zebrafish [260].
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the decomposed subtasks interact with each other through their
calculated time series data, the inferred model is more likely to
represent the dynamics correctly.

In order to reduce the number of numerical integration steps,
Matsubara et al. [138] proposed to use a radial basis function net-
work (RBFN) for parameter estimation. RBFN is a type of artificial
neural network that uses radial basis functions as activation func-
tions; it has been shown to be able to approximate nonlinear time
series data efficiently [139]. In order to examine the performance
of RBFN, Matsubara and co-workers proposed two schemes: one
used a simple genetic algorithm (SGA) with numerical integration,
and the other combined RBFN with a genetic algorithm in the input
data selection phase. Both schemes were examined in metabolic
pathways using Michaelis–Menten equations. While SGA improves
the fitness between parameterized model and time series data and
integrates every time during optimization, RBFN predicts the opti-
mal parameter values by learning the relationship between param-
eters and fitness values using slopes to replace derivatives and
integrates the system only once at the last step. Therefore, numer-
ical integrations used to evaluate the fitness are reduced from
many to one. The results indicated that the RBFN scheme halved
the computation time and increased the success rate of the optimi-
zation task.

An alternative approach avoiding numerical integration is a
modified collocation method, which converts ordinary differential
equations into algebraic equations which directly adopt the mea-
sured data to approximate the dynamic profiles at sampling points.
This approximation not only reduces computation time, but also
decouples the equations so that parallel computation is possible
for the parameter estimation. A collocation method was combined
with hybrid differential evolution (HDE) to determine the global
solution of an estimation task [140]. Again, applying this type of
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‘uncoupling’ strategy in combination with other estimating meth-
ods reduced the computation time dramatically.

4.2. Slope estimation

As a crucial part of the slope-estimation-decoupling strategy,
decent estimates of the slopes are required. If the data are more
or less noise-free, simple linear interpolation, splines [141–143],
B-splines [144], the so-called three-point method [145], or even
hand fitting [137] is effective. If the data are noisy, it is useful
to smooth them, because the noise tends to be magnified in the
slopes. Established smoothing methods again include splines, as
well as different types of filters. Artificial neural networks (ANNs)
have been shown to be useful in a number of applications of bio-
chemical pathways modeling [146]. They are so general and flex-
ible that they are considered ‘universal functions’ that are
obtained from training the ANN [128,147–149]. The main advan-
tage of using ANNs is that the resulting time traces can be trained
to fit the data arbitrarily closely and that they have an algebraic
format for which the slope can be computed straightforwardly
with methods of computer algebra [146,150]. Furthermore, the
universal output function provides an unlimited number of inter-
polated data points within the time interval of interest. Other
advantages of ANN are reviewed in [146,128]. The ANN method
was shown to determine the smoothed traces very efficiently
even if the data contained considerable noise, as long as the true
trend was well represented. However, the interpolating function
resulting from the ANN solution is a superposition of sigmoidal
functions and has the tendency to lead to artifacts in the deriva-
tives, which manifest in slight, but undesirable bias in the
smoothed traces.

Alternatives to ANNs are filters, such as the popular Kalman or
Savitzky-Golay filter or the Whittaker filter which was proposed
over 80 years ago [151]. Recently, Eilers presented a matrix form
of this older implicit method, which was called a ‘perfect filter’
[152]. Vilela and co-workers configured the Whittaker–Eilers
smoother [153] by adapting Rényi’s second-order entropy of the
cross-validation error as the optimization criterion. The filter,
implemented in the software AutoSmooth, can be used to extract
signals and derivatives from time series with non-stationary noise
structure [154].

4.3. Constraining the parameter search space

To ensure that the results of a parameter estimation fall within
reasonable ranges it is often useful to constrain the optimization
process, including guesses for the initial values, to suitable ranges
or permitted extreme values for all parameters. For instance, in BST
representations, the structural features of a system are mapped
onto model parameters in a unique fashion, as described in Section
2.3.3. Therefore, if the network structure and regulation are known,
one may be able to decide immediately whether the kinetic order
of a variable Xj is positive, negative, or zero, depending on its influ-
ence (activation, inhibition, or no effect) on variable Xi. Further-
more, rate constants are always non-negative, and kinetic orders
in BST pathway models are known to be real numbers with typical
values between �1 and +2.

Some other supporting techniques aiming to reduce the param-
eter search space include the following. Kutalik et al. [83] charac-
terized a one-dimensional basin of attraction containing the true
optimum with minimal error. Tucker and Moulton [155] proposed
a method based on interval analysis which allows exhaustive
searches of the entire set of parameter values with a finite number
of steps. Tucker et al. [156] used constraint propagation to find the
possible ranges of parameter values, thus significantly constraining
the parameter search space.
4.4. Reducing the complexity of the inference task

The typical approach of modeling is to collect network informa-
tion and translate the wiring diagram into a symbolic model, which
only contains a limited number of parameters since the biological
systems are usually sparsely connected. However, when the topol-
ogy of the system is unknown or only partially known, it appears
that one must initiate the search with a full symbolic model with
all parameters free. When the system is relatively small, it may
be feasible to exhaust all possibilities and to find the optimum.
However, when the number of variables and parameters grows,
all methods of parameter estimation eventually run into problems
of ‘combinatorial explosion,’ which makes the estimation process
extremely difficult and the solutions problematic. This explosion
can be tamed to some degree by constraining the connectivity
within the system by systematically identifying the network struc-
ture or gradually ‘pruning’ unlikely connection during optimiza-
tion process. Of benefit in this context is the observation that
biological systems are seldom fully connected and that indeed
most nodes are only directly connected to a small number of other
nodes [157,158]. These issues will be reviewed in detail in Section
5, in the context of structure identification techniques. In this sec-
tion, we focus only on parameter pruning methods.

The rationale behind the pruning techniques is closely related
to the characteristic of BST models. As briefly mentioned in Section
2.3.3, structure identification tasks can be translated into parame-
ter estimation problems if the parameter values directly map to the
network, as it is the case with BST representations. To recall this
mapping, the kinetic orders fij, gij and hij for BST quantify the regu-
latory effect of variable Xj on a production or degradation term in
the equation of variable Xi. If the magnitudes of the corresponding
kinetic orders are very small or close to zero, the connection be-
tween variable Xj and the dynamics of Xi is likely to be negligible.
Therefore, these low intensity connections can be purged during
optimization, which not only helps to detect a reasonable and par-
simonious model of the true pathway structure, but also reduces
the parameter search space for further optimization.

The simplest manner of ‘pruning’ a possibly highly connected
network is to define a threshold for the absolute value of each type
of parameter, below which values are set to zero [128,159]. In
addition, since the likelihood that a variable exists in both the pro-
duction and degradation terms with non-zero values in the S-sys-
tem model is low, the smaller of the kinetic orders is more likely to
be zero and the value of the other one is adjusted accordingly
[128].

Some authors have suggested more sophisticated methods for
this pruning process. As an extension of the objective function
for optimization, various articles have added to the residual error
the sums of the absolute values of kinetic orders as a penalty term
in the cost function. Thus, this basic pruning method for BST mod-
els penalizes all small kinetic orders, which have little effect on the
system dynamics, and prevents the model from including false-po-
sitive interactions that unrealistically inflate the model [134,160].
To improve this condition further, Kimura and co-workers
[82,124] introduced a penalty term that rearranged kinetic orders
in ascending order based on their absolute values and eliminated
those considered insignificant. Furthermore, accounting for the
observation that very few factors modulate both the production
and degradation of a specific variable, Noman and Iba [161] pro-
posed an alternative representation of the penalty term.

No matter what kind of penalty term is chosen, pruning ap-
proaches pose an obvious challenge. Namely, the weighted coeffi-
cient in the penalty term needs to be carefully tuned since it affects
the results of the structure identification task. So far there are no
clear guidelines for setting suitable penalty weights. Stochastic
ranking may be used to alleviate this difficulty since it aims to
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balance the error and penalty term in the objective function [162].
However, this method requires an additional parameter defining
the probability of the error term for comparisons in ranking. Cho
et al. [163] proposed a distinctly different way to retain the sparse-
ness feature in biological pathways without adding extra terms to
the objective function, which they coined S-tree representation.
The S-tree is a tree representation of the S-system, where the num-
ber of sub-trees corresponds to the number of ordinary differential
equations in the system. Each sub-tree is divided into two parts;
the left part represents the production term and right part repre-
sents the degradation term. The depth of the S-tree is always three
and the root node is at depth zero. Since S-tree modeling is intrin-
sically suitable for representing sparse networks, an S-tree to-
gether with genetic programming has the potential to infer
network topology and find parameter values in a more efficient
way without any a priori knowledge or adding a penalty term. To
avoid assigning a coefficient weight to the penalty term, Liu and
Wang recently proposed an alternative method based on multi-
objective optimization [164,165]. Instead of minimizing the resid-
ual error using a single objective function either in concentrations
or slopes, they minimized the concentration error, slope error, and
interaction measure simultaneously. The authors proved that the
algorithm guarantees the minimum solution for the constrained
problem to achieve the minimum interaction network for the
inference problem. The approach avoided assigning a penalty
weight for sums of magnitude of kinetic orders.

Pruning methods are also used in optimization approaches for
determining parameter values, as described in the next section.

4.5. Algorithms for determining optimal parameter estimates

The parameter estimation task is traditionally formulated as an
optimization problem that minimizes an objective function mea-
suring a generalized distance between experimental data and
model predictions. The Euclidean distance is the most commonly
used and often refers to a least-squares error criterion. Other fit-
ness evaluation methods include information based criteria
[166,167]. Two objective functions are typically used for parameter
estimation in metabolic models: a concentration error based objec-
tive function and a slope error based objective function (e.g., [140]).
The concentration error based objective function is a straightfor-
ward calculation of the sum of squared distances between the
metabolite measurements and the predictions. The simulation pro-
files are usually obtained by applying a numerical integration
method to solve the differential equations like Eq. (1). The integra-
tion process can be computational costly, especially if the system is
stiff (see Section 4.1). As an alternative, the slope error based objec-
tive function employs the decoupling technique as described in
Section 4.1 and uses the slope information for evaluating fitness
of the function. That is, it calculates the sum of squared errors be-
tween the measured slopes from the raw data (or upon smoothing)
and the predicted slopes.

The most prominent methods for parameter estimation from
time series data can be grouped into gradient-based methods, sto-
chastic search algorithms, and others that do not belong to the first
two groups. These optimization methods are reviewed in the fol-
lowing paragraphs and summarized in Fig. 4.

4.5.1. Gradient-based algorithms
The most natural choice for estimating parameter values is pre-

sumably a gradient based regression, and many of the commercial
methods of this type have been applied to metabolic models.
Among these are Gauss-Newton and Levenberg–Marquardt meth-
ods, which are included in all major software packages of the field
and will not be reviewed per se [168–170]. A comparison of some
of these methods in the context of pathway models can be found
in [50]. Marino and Voit [171] proposed a gradient based algorithm
for finding the parameter values using BST models that comprises
three modules in a novel fashion: model generation, parameter
estimation for model fitting, and model selection. First, plausible
initial models are generated in a step-by-step manner, upon
decoupling and limiting connectivity (see Section 5.2 for detail).
Secondly, each differential equation is fitted separately using the
Levenberg–Marquardt method while replacing the other variables
with raw data of smoothed traces. In the third phase, the model is
compared to earlier, simpler models, and a statistical test decides
whether the increased complexity of the model structure is war-
ranted, as judged by the residual error. If the improvement is sig-
nificant, a new, more complex model is generated, and this
process is iterated until further advancements become
insignificant.

Kutalik et al. [83] proposed an intriguing Newton-flow optimi-
zation method for parameter estimation in S-system models. The
method starts with decoupling the differential equations and set-
ting up an objective function for each equation. The next step is
to select suitable start guesses and bounds for parameters and
run a Newton method to obtain several points in the parameter
space that correspond to reasonable, coarse solutions. The authors
found that this space of coarse solutions contains a one-dimen-
sional attractor. Standard regression allowed them to estimate
the parameters of this attractor. Afterward, the Newton method
was performed again using the initial guesses lying on the esti-
mated attractor to find the true optimal of the parameter values.
The interesting feature of this method is that most (or maybe even
all) good parameter solutions seem to lie on one-dimensional man-
ifolds within the high-dimensional parameter space. Optimization
along this curve is comparatively easy. A potential problem of the
method is that the original initial guesses for the parameters must
lie within the basin of attraction of the one-dimensional manifold.
Otherwise, each run may lead to disjoint sections of the parameter
space.

Because biological systems are usually nonlinear, the problem
of parameter estimation can be stated as a nonlinear programming
problem (NLP) subject to nonlinear differential-algebraic con-
straints [172]. Because of its nonlinear and constrained nature, this
inverse problem is usually non-convex. Therefore, most of the tra-
ditional nonlinear algorithms involving gradient methods run the
risk of getting trapped in local optima, depending upon the degree
of system nonlinearity and the initial starting point [127].

4.5.2. Stochastic search algorithms
Several classes of stochastic methods are available for global

optimization. They include evolutionary computation, simulated
annealing, adaptive stochastic methods, clustering methods, and
other meta-heuristics, such as ant colony optimization and particle
swarm optimization. These algorithms have been applied to
parameter estimation tasks with the goal of finding global solu-
tions, especially in the context of identifying the structures of gene
regulatory networks [172].

Evolutionary computation (EC) techniques, also known as bio-
logically inspired methods, include genetic algorithms, evolution-
ary programming, evolution strategies, genetic programming, as
well as their variants. They are attractive because they have a high
potential of finding (at least the approximate locations of) global
optima. Genetic algorithms (GA) have been shown to be very use-
ful and practical in parameter estimations of biological systems
(e.g., [150,160,172,173]). Using a conventional simple genetic algo-
rithm (SGA), Tominaga et al. inferred parameter values of a small
network, but only with a very limited number of parameters, and
the convergence rate was low [174]. SGA typically has two prob-
lems: early convergence in the fast stage of the search and evolu-
tionary stagnation in the last stage. Kikuchi et al. [134] enhanced
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SGA by using a more robust real coded genetic algorithm (RCGA)
and improved the conventional cost function by adding a penalty
term to prune unlikely connections in the investigated gene net-
work using the S-system formalism. In addition, they employed a
novel crossover method and introduced a gradual optimization
strategy in the procedure. The results showed that the algorithm
successfully inferred the network structure with faster conver-
gence rate, optimization speed, and with more parameters pre-
dicted correctly, compared to the traditional GA. However, the
approach turned out to be computationally very costly because
of numerical integration of the entire system of differential equa-
tions (see Section 4.1).

Other modifications were made to improve the efficiency of
SGA using time series data in S-system form. Examples include:
a hybrid algorithm of SGA with a Modified Powell method
[175]; a hybrid algorithm of SGA for static Boolean networks ap-
plied to an S-system with steady state and temporal data [81];
and a combination of RCGAs with unimodal normal distribution
crossover and minimal generation gap to optimize parameters
in S-systems [176–178]. Daisuke and Horton optimized an S-sys-
tem model with a distributed genetic algorithm with ‘scale-free’
properties [179]. Ho et al. [180] proposed an intelligent two-stage
evolutionary algorithm (iTEA), which used an intelligent opti-
mizer to solve decomposed ODEs independently, then combined
all solutions from each subtask and used an orthogonal experi-
mental design-based simulated annealing algorithm to refine
the solution.

Spieth and co-workers [181,182] proposed a memetic algorithm
(MA) consisting of two parts: a local search with an evolutionary
strategy (ES) for parameter estimation, and a global GA based
search framework for structure identification, where the former
is embedded within the latter part. They tested the algorithm on
an S-system model and the results showed that MA was better sui-
ted for inferring genetic networks than a standard ES or GA. In fol-
low-up work, they showed that feedback from the local search to
the GA based search can further improve the performance of MA
[183].

Kimura et al. [124] used an evolutionary algorithm called Ge-
netic Local Search with distance independent Diversity Control
(GLSDC) and combined it with a decomposition strategy to esti-
mate S-system models of gene regulatory networks. The proposed
method included an estimation technique for the initial gene
expression levels and enabled the reconstruction of medium-scale
genetic networks with noisy data. They also showed that the com-
bination with a cooperative co-evolution algorithm can further im-
prove the accuracy of prediction [82]. Okamoto’s group also
proposed evolutionary search techniques, such as the Network-
Structure-Search Evolutionary Algorithm (NSS-EA) and a variant,
the Grid-Oriented Genetic Algorithm Framework (GOGA Frame-
work). They employed an S-system as the underlying mathemati-
cal model and used a GA as search engine to infer network
structure [184–186].

Noman and co-workers recently incorporated their previously
developed techniques into an improved memetic algorithm for
inferring gene regulatory networks [161,166,187–189]. They used
differential evolution (DE) along with a hill-climbing local-search
method in their evolutionary algorithm. An information criterion-
based fitness evaluation was introduced instead of the conven-
tional least-squared errors approach.

Tsai and Wang [140] used hybrid differential evolution (HDE)
for estimating a satisfactory, though not optimal solution, and then
used the solution as the starting point for a gradient-based optimi-
zation method to obtain refined solutions. As described in Section
4.1, they used a modified collocation method to avoid direct
numerical integration. In their recent work, they implemented
HDE combined with a multiple-objective optimization approach
(see Section 4.4 for review) to infer biochemical networks in S-sys-
tem format [164].

Genetic programming (GP) has also been employed to discover
the topology of metabolic pathway from time-series data (e.g.,
[190]). GP is an evolutionary algorithm that evolves mathematical
expressions or computer programs. Traditionally, GP represents a
mathematical expression or computer program as a tree structure,
in which every tree node has an operator function and every termi-
nal node has an operand. The general process of GP includes: ini-
tialization (randomly generate trees as individuals), evaluations
(calculate fitness of each individual), selection (select individuals
from the group base on probability), crossover (randomly select
two individuals as parents and swap randomly chosen sub-trees
of the parent trees), and mutation (such as insertion or deletion
of terminal nodes) (cf. [191] for detail). The GP process makes
mathematical expressions easy to evolve and evaluate. Therefore,
in contrast to GA algorithms, which usually require defining equa-
tions before optimization, GP provides a general approach for find-
ing arbitrary equations from time series data without specific
knowledge of the equation. The ordinary GP is not always effective
in finding the parameter values because the method relies mainly
on the combination of randomly generated constants. Sagamoto
and Iba [192] therefore used a least-mean-square (LMS) method
along with ordinary GP to improve efficiency, using an S-system
as one example. Their results showed that the fitness values im-
proved faster in the early phase with the LMS method compared
to the non-LMS method, since the former seemed to provide a bet-
ter seed for the GP search.

Sugimoto and co-workers [193] implemented GP along with
adding a penalty term to the cost function and introducing nu-
meric mutations to the conventional procedure. They tested this
method by predicting two equations of a metabolic reaction
scheme regarding adenylate kinase and phosphofructokinase in
Michaelis–Menten format, the equation of which is hard to derive
if the underlying mechanism is not known. While their results
showed that the algorithm can predict the equations with rela-
tively simple forms, the method is already very time consuming
for this relatively small system.

Kim et al. [194] adopted a symbolic pre-processing regression
step in GP to avoid time consuming numerical integration, since
the estimation of slopes for each data point in the time series can
be obtained from the results of GP. Cho and co-workers [163] took
advantage of the fact that GP has an evolving tree structure for gi-
ven data and proposed S-tree based genetic programming for
parameter estimation and structural identification in S-system
models. As introduced in Section 4.4, this approach intrinsically ac-
counts for the sparseness of the biological network. Therefore, even
though no a priori knowledge about the network is known, the S-
tree based GP can still identify the underlying structure rather effi-
ciently without adding a penalty term in the objective function.

The discussion in the previous paragraphs indicates that a con-
siderable number of recent proposals applied evolutionary algo-
rithms to tackle inverse tasks with BST models. So far no
comprehensive comparison among these algorithms has character-
ized their relative efficiency, robustness, and accuracy. However,
some more limited comparisons have been presented. Moles
et al. [172] compared some stochastic global optimization methods
using the case study of a biochemical model that consisted of 36
parameters and was formulated as a set of eight ODEs. This model
was formulated in Michaelis–Menten representation, which could
not take advantage of the highly structured format of BST
representations. Spieth et al. [195] compared six evolutionary algo-
rithms in three model frameworks: linear weight matrices, S-sys-
tems, and H-systems, where one fitness function was used to
evaluate the convergence of algorithms. A comprehensive compar-
ison of evolutionary algorithms is still needed.
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Simulated annealing, colony optimization, and particle swarm
optimization are also stochastic optimization methods. Simulated
annealing (SA), a physically inspired method, was created to simu-
late the heating and cooling process of metal or glass, where atoms
(solutions of the parameter estimation task) are allowed to leave
their current state of low energy (fitness) during heating and have
a chance of finding an even lower state (better fit) during cooling
[196]. SA can behave as a global or local optimization search and
automatically switches from a global to a local search when the
‘temperature’ goes down. Gonzalez et al. [197] adapted SA for S-
system parameter estimations from time series data. They tested
the algorithm using three artificial datasets and assumed that the
structure was either known or unknown and solved the entire
set of ODEs per integration or upon decoupling. They also applied
the algorithm to a real biological system.

Ant colony optimization (ACO) was inspired by the behavior of
ants during the search for short paths between their colony and
food sources, using pheromones that attract other ants, which then
increase the amount of pheromone [198]. Over time, ever shorter
paths (better solutions of the estimation task) become more popu-
lar. ACO is a probabilistic technique for solving computational
problems that can be reduced to finding good paths through nodes
in a graph. Zuñiga et al. [199] adapted ACO for S-system models by
treating each metabolite as a node in a graph and inferring how
other nodes were connected to it. They called their algorithm for
identifying network structure a ‘discrete ACO.’ As an extension of
ACO they furthermore proposed a variant of an enhanced aggrega-
tion pheromone system (eAPS) for parameter estimation tasks
involving S-systems, called a ‘continuous ACO.’ The discrete ACO
starts with a fully connected graph which corresponds to a set of
equations where all variables are included in every equation. Their
preliminary results showed that ACO produces good results when
the test systems are very small, However, although the discrete
ACO was able to eliminate some nodes (metabolites) from the
graph in larger systems, it had problems eliminating unlikely con-
nections and thus still produced an unreasonably large search
space for the parameter estimation task. The authors concluded
that the large search space might have been the reason for the con-
tinuous ACO to get trapped in local minima during the parameter
estimation phase.

Particle swarm optimization (PSO) is a stochastic, population-
based evolutionary computation algorithm. The original form of
the PSO algorithm, which was motivated by social-psychological
principles such as bird flocking and fish schooling, was first de-
scribed by Eberhart and Kennedy [200]. In PSO, each potential solu-
tion is represented as a particle. A collection of potential solutions
is called a swarm which consists of particles that fly around in a
multidimensional search space. During flight, each particle adjusts
its position according to its own experience and also collaborates
with its neighboring particles through communication. When a
particle encounters a promising solution, the area surrounding
the solution is further explored by the swarm. Therefore, PSO com-
bines local search methods with global search methods. Naval et al.
[201] adapted and refined PSO to scan the parameter space of a BST
model.

4.5.3. Other algorithms
Some methods that aim to reduce the parameter search space

using BST formalisms are described in Section 4.3 [83,155,156].
For linear parts of pathways, a technique of ‘peeling’ terms [202]
can be applied to models in BST to convert the nonlinear parameter
estimation task into a series of linear regression tasks. Specifically,
beginning with an equation that contains only one unknown
power-law term, the differentials are substituted by slopes and
the parameters of the unknown terms are estimated by linear
regression. The results are fed into the equation of the subsequent
metabolite, thereby making it amenable to linear regression as
well, and this process is iterated to the end of the linear pathway.

As described in Section 4.5.1, the traditional gradient methods
usually run the risk of getting trapped in local optima. To alleviate
the problem, Polisetty et al. [203] proposed a branch-and-reduce
algorithm to convert inverse problems involving GMA models into
a convex optimization problem that is guaranteed to obtain the
global solution within a predescribed parameter space. The major
drawback of this method is its computational complexity.

Alternating regression (AR) [37] employs a decoupling tech-
nique for systems of differential equations and dissects the nonlin-
ear parameter estimation task for S-systems into iterative steps of
linear regression. The method is uniquely geared toward BST sys-
tems, because it utilizes the fact that power-law functions are lin-
ear in logarithmic space. AR is extremely fast in comparison to
conventional methods and works well in many applications, if it
converges. In cases where convergence is an issue, the fast speed
renders it feasible to dedicate some computational effort to identi-
fying suitable start values and search settings. AR is beneficial for
the identification of system structure in S-systems as well. An
extension of AR was successfully applied to S-distributions within
the field of computational statistics [204].

As an extension of AR, eigenvector optimization (EO) [159] is
based on a matrix formed from multiple regression equations of
a decoupled S-system that is considered in logarithmic space. In
contrast to AR, EO operates initially only on one term, whose
parameter values are optimized completely before the comple-
mentary term is estimated. It was demonstrated that the EO algo-
rithm converges fast and can be expected to converge in most
cases, without necessarily requiring knowledge of the network
structure. EO is easily extended to the optimization of network
topologies with stoichiometric precursor–product constraints
among equations.

Another recently proposed approach to metabolic systems esti-
mation, called Dynamic Flux Estimation (DFE), consists of two dis-
tinct phases and applies particularly well to GMA models [21]. It
corresponds to stoichiometric analysis, but does not consider sys-
tems in steady state but rather over a time horizon. The first phase
attempts to establish a linear relationship among all fluxes in the
system at each time point. Under certain rank conditions, these
relationships form a matrix that can be solved uniquely. This first
phase is entirely model-free and essentially assumption-free and
includes a diagnosis of inconsistencies within the time series,
and between the assumed system topology and the given data.
The result of the first phase consists of numerical representations
of all fluxes as they depend on the variables affecting them. The
second, model-based phase addresses the mathematical formula-
tion of these flux representations as explicit functions of the in-
volved variables. Different from currently available methods, this
phase allows quantitative diagnostics of whether the chosen math-
ematical representations are suitable. The two-phased approach
thus permits rigorous, quantitative diagnoses of the data, the mod-
el structure, the assumptions made in the choice of flux represen-
tations, and of the various causes of residual errors. Preliminary
results suggest that the DFE approach is more effective and robust
than alternatives that are presently available, if sufficient suitable
data are available. Its combined model-free and model-based
analyses reduce compensation of error between equations and be-
tween flux terms and promise significantly improved extrapolabil-
ity toward new data or experimental conditions. Its diagnostic
tools pinpoint causes of inadequate fits between model and data
and suggest either changes in assumptions related to model choice
or the use of data as un-modeled ‘off-line data.’ The main drawback
of DFE is the requirement of rather comprehensive metabolic time
series data, which however can be obtained in cases with already
existing experimental methods. Furthermore, a direct application
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of DFE requires that the stoichiometric flux system is of full rank,
which is usually not the case and requires additional ‘substitute
information’ [86]. Other issues needing refinement are related to
missing data, missing flux information, error compensation among
the parameters within a given flux, and ill-characterized systems
topologies (see also Section 7).

Other methods which were developed recently for inverse
problems in biological systems are discussed in [139,205–210].
However, these methods have not yet been implemented specifi-
cally for BST applications.
Fig. 5. Structure identification algorithms for inverse modeling. Some representa-
tive references are listed.
5. Inference of network structure

As mentioned in Section 1, the traditional approach of modeling
begins with collecting network information that is translated into
the design of a stoichiometric wiring diagram, which may then
be converted into a fully kinetic metabolic pathway model, if de-
sired. The translation and conversion more or less reflect the actual
biological system as long as the input information is essentially
correct and complete. In reality, information on network connec-
tivity and regulation is often only partially known and seldom fully
understood. As a consequence, the model design phase is subject to
uncertainties, up to a point where it seems impossible to deter-
mine even the initial wiring diagram. Some of the identification
methods discussed in this section ameliorate the situation and
make it possible to deduce structure and regulation from time ser-
ies data, at least in principle. Before we discuss these methods, it is
beneficial to revisit aspects of the investigated system and the
experimental data that have a direct effect on the complex identi-
fication task.

The need for valid system identification can be described in
three aspects. First, wrong hypotheses regarding variables and
interactions to be included in the model tend to lead to wrong
interpretations of the results. Second, overly complex model repre-
sentations may provide good fits to the observed time series data
used for estimation but are unlikely to perform as well when tested
against new datasets, due to over-fitting. Third, the inclusion of too
many components and interactions in the model will eventually
result in problems caused by combinatorial explosion, which
means that any computational technique will ultimately be over-
whelmed by the rapidly increasing number of equations, variables,
and interactions between variables in large systems.

Fortunately, biology naturally offers a counteracting and very
beneficial feature: namely the likelihood that a real biochemical,
genetic, or proteomic network is fully connected is very low, be-
cause most metabolites (genes, proteins) are connected only to a
limited number of other metabolites (genes, proteins); in fact,
the vast majority of metabolites (genes, proteins) are involved in
fewer than four or five processes each [157,211,212]. To take
advantage of this fact of nature, it is therefore a desirable goal to
precede any estimation attempt with a concerted effort to limit
the number of candidate (structural and functional) connections
within a system, as far as this is objectively possible. This a priori
type of limitation can very significantly reduce the parameter
space that must be searched, because structure identification and
parameter estimation are closely related to each other, at least if
canonical models are used.

In this section, we review some of the structure identification
techniques; they can be categorized into two groups. First, mod-
el-free, coarse structure identification methods can be used to pre-
screen the particular situation at hand. These methods are based
directly on the data and involve the determination of an estimated
Jacobian matrix after small perturbations about the system’s nor-
mal operating point, deductions from direct observation of the
time profiles, a correlation-based approach, and a Bayesian net-
work technique. The second group consists of model based struc-
ture identification methods, including ‘simple-to-general’ and
‘general-to-specific’ modeling strategies, as well as various addi-
tional methods using time series data within the BST framework.
These methods and representative references are summarized in
Fig. 5.

5.1. Model-free structure identification approaches

5.1.1. Methods based on the Jacobian matrix
Much of the information necessary for identifying network

structure depends on dynamic experiments. One type of such
experiments is the measurement of transient responses of the sys-
tem after small perturbations about the steady state. If the pertur-
bations are small enough, the system can be expected to behave in
a roughly linear fashion. Thus, the measurements may be used to
populate the Jacobian matrix of the corresponding linearization,
which then reveals the connectivity of the network. Over the past
two decades, several proposals have been made to obtain the Jaco-
bian matrix from experimental observations. Chevalier and co-
workers [213] solved the Jacobian by applying multilinear least-
square fitting to perturbed data. This approach is straightforward
but very sensitive to noise and missing data points, because the
crucially important differencing procedure is prone to generating
large errors. To avoid instabilities due to numerical differentiation,
the same group suggested using an integral representation, which
expressed the solution in terms of eigenvectors and eigenvalues
and solved the equation using nonlinear regression [213]. The
advantage of this approach is that no differentiation is needed
and hence the slopes need not be estimated. However, the draw-
back of this method is that the fit to a sum of exponentials with
undetermined exponents is numerically somewhat problematic,
and the nonlinear regression does not necessarily provide a solu-
tion which fits the data.

To overcome this difficulty, Sorribas et al. [214] suggested to
reformulate the integral representation of the target function by
reducing it to a multilinear regression problem. As the result, the
eigenvalues of the Jacobian in the previous method can be easily
calculated. However, the computation of eigenvalues is again
rather sensitive to noise and rounding error, rendering the method
not very reliable unless the multiplicities of the eigenvalues are ex-
actly known. In order to avoid this problem, Dı́az-Sierra and co-
workers [215] proposed a variation to the previous methods, in
which they directly obtained the Jacobian by expanding it in its
Taylor-series without searching for eigenvalues. This methods
yielded faster convergence.

All these methods are based on linear approximation, which is
valid as long as the perturbation from the steady state remains rel-
atively small. Thus, on one hand, the range of deviations needs to
be small enough to yield a sufficiently accurate representation.
On the other hand, the perturbation must be large enough to
generate measurable responses. To alleviate this dilemma,
Veflingstad et al. [216] suggested using the entire time course
and fit the data in a piecewise linear fashion, using as an illustra-
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tion example an S-system within BST. In the proposed method, the
time series is subdivided into appropriate time intervals and the
linearization is computed about a chosen operating point within
each subset. Therefore, instead of focusing on one operating point,
most reference states are different from the steady state. The re-
sults show that the piecewise approach is more likely to capture
the relationship between variables in the system and can tolerate
larger perturbations. The authors also showed that the collection
of estimated coefficients resulting from different variations of lin-
earization provided very strong clues about which variables were
likely to be involved in a given equation and which were not. These
clues reflected likely parameter ranges or likely constraints on
parameter values of the true model. A major drawback is that this
method does not identify parameter values per se. For instance, as
discussed in the original paper [216], it does not allow a distinction
between various combinations of gij and hij in the S-system form
because only their difference is being assessed as a single parame-
ter in the linearization. However, this information is valuable. If
additional information on the Jacobian matrix and both the con-
centration and fluxes at steady state are known, the difference be-
tween gij and hij can be directly calculated [217]. Also, if the
difference has a magnitude that is significantly different from 0,
it is likely that one of the kinetic orders is zero, because it is rare
that a variable influences both production and degradation of the
same variable. Therefore, if one can detect which connection may
be omitted, the kinetic order can be computed straightforwardly.

Hatzimanikatis, Floudas and Bailey [218,219] indirectly contrib-
uted to the topic of structure identification per linearization by
optimizing not only the production of yield in an S-system at
steady state, as it has been done many times (e.g., [34,220,221]),
but by also optimizing its regulatory structure. This numerical
and structure optimization task led to a mixed integer linear
programming (MILP) approach, for which standard software is
available.

5.1.2. Direct observation
Unlike the previous methods for determining the Jacobian ma-

trix by examining the linear properties on small amplitude pertur-
bation near one or more operating points, the network connectivity
can be deduced to some degree from direct observations on re-
sponses to perturbations of arbitrary amplitude made at different
locations in the network. Vance and co-workers [222] proposed a
strategy based on perturbing different components in a network
and showed that relationships between the perturbed component
and the remaining components may be deduced by observation of
features in the response profile. These features include the order
and size of the extreme values of the unperturbed components in
response to the perturbed component, and the initial slopes of
the time series at the perturbation. The former reflects the topolog-
ical distances among the perturbed components and the remaining
components in the network, while the latter reveals whether the
components are directly affected by the perturbed variable or
not. This distinction is accomplished by checking if the initial
slopes are non-zero or zero upon perturbation. Vance and collabo-
rators showed that this approach worked well in some artificial
networks including branching, feedback, and regulatory interac-
tions. This method was also applied to an in vitro experiment with
a glycolysis system, where the authors measured concentration
changes in the reactor following impulse changes of different reac-
tion metabolites [223]. From the experimental time series data the
authors were able to identify some of the causal connectivities
among the metabolites in the reaction pathway. Even though the
method performed well in the synthetic time series and with
experimental data from relatively small systems, this approach
may not be applicable to more complicated networks, where the
interpretation of profiles and the network reconstruction must be
expected to be much harder. The emerging field of causality anal-
ysis [224,225] may be helpful for this type of analysis in the future.

5.1.3. Correlation-based approach
Some alternative approaches have been suggested for the

reconstruction of chemical reaction networks. Arkin and co-work-
ers [226,227] showed how correlations among components mea-
sured in the system may be used to infer or reconstruct a
chemical reaction pathway. The approach, termed correlation met-
ric construction (CMC), is based on the calculation and analysis of a
time-lagged multivariate correlation function of time series data
that are subjected to a series of random, large amplitude changes
in the input concentration. The correlation information is used to
construct the distance matrix and interpreted using a two-dimen-
sional graph obtained with a projection technique called multidi-
mensional scaling (MDS). The graph represents the connectivity
and the strength of interactions among the species in the network.
For instance, the shorter distances in the graph imply stronger con-
nections while longer distances represent weaker interactions. The
approach was tested experimentally on a part of an in vitro glycol-
ysis system containing eight enzymes and fourteen metabolites
[227]. Along the same lines, Samoilov and collaborators [228] pro-
posed two methods, entropy metric construction (EMC) and entro-
py reduction method (ERM), for the analysis of correlations
between species from time series data and the inference of their
underlying network.

5.1.4. Bayesian network approach
Another approach of network structure identification is statisti-

cal in nature and uses Bayesian ideas for assessing the probability
that the dynamics of one metabolite directly depends on the
dynamics of another metabolite. At the core of these methods is
a Bayesian network [229], which is a graph model that represents
a set of nodes (variables) and their conditional probabilistic depen-
dencies upon each other. Its analysis permits the explicit detection
of causal associations among nodes in the system, as long as there
are no structural or regulatory cycles, for instance, in the form of
material recycling or feedback signals. While the latter exclusions
are clearly restrictive, Sachs and co-workers [66] successfully used
Bayesian network methods to investigate the structure of a pro-
tein-signaling network from single cell flow cytometry data. The
computational methods confirmed and elucidated most of the pre-
viously reported causalities and revealed new relationships
between the involved signaling proteins. Bayesian network meth-
ods have not been applied extensively to metabolic pathway sys-
tems, but more often to genomic networks, where the task was
to reconstruct networks of expression traits, or networks com-
prised of both expression and disease traits [67].

5.2. Model-based structure identification methods

The task of structure identification using model based ap-
proaches is very difficult for non-canonical models, because there
are infinitely many nonlinear models that would have to be ex-
plored, unless some additional rationale could guide the model
selection. Even within the comparatively limited area of metabolic
modeling, the choices of combinations of rate functions would be
daunting [25]. In any case, some types of ‘basis functions’ are re-
quired for about any strategies of inferring network structures, as
described in the following sections.

5.2.1. ‘Simple-to-general’ and ‘general-to-specific’ modeling
As briefly mentioned in the introduction of this section, overly

complex models may fit the data very well since increasing the
complexity of the model naturally allows more freedom to provide
a better fit to the data, for instance, in terms of the sum of squared
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errors. However, an over-inflated model typically does not perform
well when tested on new data. This problem is known as over-fit-
ting. One approach for restricting model complexity and to find the
optimal model size is to add a penalty term to the cost function
that is minimized. The optimal model can then be determined by
finding the one that minimizes the aggregate cost function [230].
The consequent problem of using this approach is how to weigh
data fit against model complexity. One approach, coined ‘simple
to general,’ calls for starting with the simplest reasonable model
and adding one term at a time until a minimal cost function is
found (e.g., [231]). In the opposite direction, the ‘general to specific’
strategy initially includes everything possible in the model and
then gradually eliminates terms until the minimum in the cost
function is found [232]. Crampin and co-workers [233,234] used
these two approaches of model construction to extract kinetic
information from time series data. Although their results suggested
that the general-to-specific algorithm outperforms the simple-to-
general approach, they indicated that when the number of chemi-
cal species included in the model is large (�10), the numbers of
possible elementary reactions are massive, thus making the com-
putation difficult if not infeasible. Therefore, it is desirable to limit
the size of the basic set below a reasonable upper bound. This
strategy appears to be reasonable, because genomic, metabolic,
and proteomic networks are generally sparsely connected [157].
An idea similar to the simple-to-general strategy was discussed
by Marino and Voit [171], who addressed structure identification
tasks beginning with the simplest types of S-system equations
(see below).

5.2.2. Use of time series data
Model-based methods of structure identification are especially

powerful if they are based on time series data. As discussed earlier,
parameter estimation from time series data usually requires con-
siderable computational effort, and this effort increases dramati-
cally when the structure of the underlying system is unknown.
The challenges of identifying the correct structure and regulation
of a system strongly suggest using all preprocessing tools available
to limit the analysis to the most likely connections in advance, re-
duce the search space and identify good initial guesses for the
parameters.

For the identification of structure from time series data, BST
models seems particularly useful, especially if not much specific
information about the mechanistic processes within the biological
network is available. The advantages and features of BST represen-
tations have been reviewed in Sections 2.3.3 and 4.4 and need no
further description here.

In addition to the computational pruning techniques reviewed
in Section 4.4, pruning can also be achieved based on biological in-
sight. Almeida and Voit [147] suggested making maximal use of
other a priori biological information that might be available in
addition to the time series data. As a specific example, Voit and
Savageau [136] analyzed a yeast fermentation system in several
a priori possible variations that corresponded to hypotheses
regarding the existence of specific processes and regulatory signals
and studied the improvement in error with statistical methods.

In a more generic fashion of ‘inverse pruning,’ and pursuing the
‘specific to general’ strategy, Marino et al. [171] proposed an algo-
rithm based on reconstructing S-system equations in a gradual
progression. Using the decoupling technique and focusing on one
differential equation at a time, they began with equations with
constant input and simple substrate driven degradation, obtained
the best possible fit, and then gradually added other variables to
the equation, always checking their statistical significance. Thus
starting from the minimal (and most parsimonious) model, choos-
ing a modest connectivity index, and increasing the number of
variables step by step, until a maximally allowed level of connec-
tivity was reached, they identified small pathway systems rather
efficiently.

Daisuke and Horton [179] also utilized the ‘scale-free’ property
of networks [235,236] to restrict the connectivity in biological sys-
tems during optimization procedure. Their results showed that the
restriction increased the conversion ratio while reducing the aver-
age number of generations and reducing both false positive and
false negative estimations of links in the network. Zuñiga et al.
[199] recently proposed applying ant colony optimization (ACO)
to the network inference problem using the S-system formalism.
Their preliminary results showed that, starting with a fully con-
nected network, ACO was able to recover the connectivity of the
network.

Kimura et al. [237] proposed a function approximation ap-
proach outside BST to infer reduced Normalized Gaussian network
(NGnet) models of genetic networks from time-series data. Their
results showed that the method successfully inferred the genetic
network structure from artificial datasets with high specificity
and sensitivity. The method was also tested on random genetic
networks and actual biological data. The computational time of
this method was shown to be much shorter than for other infer-
ence methods.
6. Toward a streamlined ‘work-flow’ for inverse modeling

As described in Sections 4 and 5, many methods have been
developed recently that attempt to solve parameter estimation
and structure identification problems through inverse modeling
using the BST formalism. Most of these methods were developed
to address the main problem of optimizing parameter values
against observed time series data using gradient based methods,
regression algorithms, or evolutionary approaches. Other methods
were proposed as support algorithms, for instance, methods for
avoiding the time consuming integration of differential equations,
smoothing noisy data and estimating slopes, restricting the param-
eter search space, excluding unlikely connections within the net-
work, or reducing the number of parameters to be estimated.

Many of the published papers used a combination of several
methods to solve the inverse problem. For instance, they may have
applied decoupling techniques along with various optimization
algorithms, tried to reduce the number of parameters before esti-
mating their values, or included several objective functions to con-
strain the solution space.

In spite of the considerable number of methods that have been
proposed for inverse modeling using BST models, each method has
its pros and cons and there always seem to be conditions and sit-
uations where one method works well and the other not so. In
the end, there is currently no algorithm that is perfect, or even suf-
ficiently effective, for the majority of realistic cases. Granted, each
proposed algorithm showed effective solutions for particular cases
and superiority in comparison to other methods. Nevertheless,
most algorithms were only tested against synthetic time series
data with respect to robustness and algorithmic efficacy, and it is
known well that many such results fail when the same methods
are applied to real experimental data. Furthermore, different
authors used different benchmarking systems, so that it is hard
to tell from the published results which algorithms are superior
to the others, and under what conditions.

The difficulty of obtaining fair comparisons is a result of the fol-
lowing five issues. First, as said before, different biological systems
were used to demonstrate the usefulness of the algorithms. It is
clear that different systems generate synthetic time series with
distinctly different properties. For instance, they strongly affect
the features of the data matrices that are the basis for subsequent
computation. Depending on the specific data, the matrix may be
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ill-conditioned or exhibit collinearities between rows or columns,
and this algebraic consequence has a direct effect on the efficacy,
correctness and reliability of the tested algorithms. As a result, it
is difficult to compare the algorithmic methods and simulta-
neously to discern how they are influenced by the features of the
test system. Second, the numbers of time series points included
for computation are different or unstated. Thus, the effects of data
point inclusion or missing data on the algorithm are unclear, but
they can affect the information criteria and the fitness score of
the method. Third, the objective functions selected for the optimi-
zation vary and thereby prevent direct comparisons among algo-
rithms. Fourth, the constraints on the parameter values are often
different. This seemingly minor issue makes it difficult to tell if
the algorithm converges since the boundaries are relatively close
to the true optimum or because of the efficiency of the algorithm.
Fifth, in addition to testing the methods using noise-free data, arti-
ficial ‘measurement errors’ are introduced to examine if the algo-
rithms can still find the correct parameter values. However, the
way and extent of adding noise and the methods used for data
smoothing often differ, which renders fair comparisons difficult.

A cursory comparison of parameter estimation algorithms in
biochemical pathways has been published, but only two networks
were considered and neither of them was implemented for BST
applications [172].

6.1. Benchmarking framework

To address the problems indicated above, del Rosario and co-
workers [238] recently proposed a project called MADMan (Mu-
nich–Atlanta–Diliman–Manila), which aims to compare the pub-
lished parameter estimation algorithms using BST formalisms in
a systematic way, including the testing of the algorithms with
the same variety of networks, uniform benchmarking cases, and
standardized evaluation criteria. The goal of the benchmarking
framework is to develop a strategy for choosing a set of candidate
algorithms given a biochemical or gene regulatory network and
experimental data. MADMan is an ongoing project that constitutes
a huge task, which will require substantial effort and cooperation
among the participating groups.

The direct comparison of various optimization algorithms and
different data and settings will ultimately be the least biased strat-
egy to determine which algorithms are better than the others. One
must be aware though that speed (or lack) of convergence and
unsatisfactory performance in terms of fitness are merely some
of the issues that need to be analyzed for each optimization algo-
rithm or computational software. Other features may contribute
to the problem and its solutions as well, such as data related issues,
model related issues, and mathematical issues, as reviewed in Sec-
tion 3.4.

6.2. Work-flow strategy

While the MADMan project will attempt to clarify the applica-
bility of methods under a wide range of conditions, we propose
in this section a streamlined ‘work-flow’ strategy for estimating
parameter values in BST models with currently available methods.
The work-flow diagram consists of a decision process based on po-
tential problems that are encountered with some regularity. These
include issues related to the time series data, model of choice, com-
putational efficiency, and mathematical redundancy during the in-
verse modeling process. The work-flow also suggests relevant
diagnostic tools or corresponding solutions. It addresses the main
optimization algorithms as well as other supporting methods and
diagnostic techniques, along with some assumptions and educated
guesses that are required to estimate all parameter values of a sys-
tem of realistic size.
6.2.1. Goals
The ultimate goal of inverse modeling is to find a mathematical

model that describes the biological phenomenon and predicts sit-
uations that had not been used for model identification or data fit-
ting with correctness, robustness, and efficiency. These standards
may not always be fulfilled simultaneously, thereby requiring
compromises. For instance, algorithms that find the optimal solu-
tion may be expensive in terms of computational time, whereas
some of the fast algorithms may only be able to find coarse
solutions.

The judgment on algorithms is comparatively easy when syn-
thetic time series are used for testing, since the criterion of ‘cor-
rectness’ is then automatically given and easy to assess by
checking the fitness score, testing the validity of the inferred net-
work structure, and comparing the estimates with the true model
parameters. However, in reality, the ‘correct’ model is not known
and goodness of fit cannot always guarantee the reliability and
applicability of the model. For instance, the model with the small-
est residual error might a priori be deemed mathematically the
‘best’ model. However, a small error does not necessarily imply
that the model is the best choice for describing the biological sys-
tem. In many actual cases, the ‘best model’ tends to have over-fit-
ting problems (see Section 5) and may not be able to extrapolate
toward untested conditions when no extra constraints are intro-
duced. Furthermore, a solution that fits the observed time series
quite well may not necessarily be unique. Other solutions may ex-
ist, with distinctly different parameters, and with fits of a similar
quality. In fact, instead of aiming to find ‘the one best’ model,
one might set the goal of every inverse modeling strategy as the
task of determining all models that are consistent with the data
within some acceptable error. The resulting candidate set of
parameters may be clustered tightly or scattered throughout the
search space. In either case, the diversity of possible solutions is
helpful for exploring potential model structures and proposing
possible causal relationships among the network components. Fur-
thermore, the candidate models can be assessed with respect to
stability, sensitivity, gains, or other features that might shed light
on the models and the investigated biological system [1,35]. Com-
parative simulations with the candidate models may identify one
or the other model as more likely or suggest hypotheses or critical
experiments that ultimately reveal to true composition of the sys-
tem at hand.

6.2.2. Flow diagram of inverse modeling strategy
The proposed flow diagram for inverse modeling is shown in

Fig. 6. The global time series data are entered into a matrix, which
is then screened and preprocessed with diagnostic and corrective
tools (Step r). For instance, if the variable traces have similarly
shaped dynamics, they may be (approximately) collinear with each
other. The calculation of the condition number or correlation
coefficient can point to possible collinearities in the data matrix
(Step s). If the time traces are collinear, one may remove the mod-
el redundancy by pooling collinear variables or ignoring a subset of
them, or merge constant variables with the rate constant (Step t).
If there is no collinearity, a symbolic mathematical model of the
system can be derived based on the model of choice, without
numerical specification of parameter values (Step u). It has been
shown that S-system and GMA representations in BST are good
candidates for this propose. After setting up the full model, it is
advisable to search for possible simplifications. For instance, if
the network topology is known, a reduced symbolic model can
be formulated with some parameters set to zero, in accordance
with the network diagram (Step v). If the system contains ubiqui-
tous metabolites such as ATP, which are involved in dozens of reac-
tions, partial modeling techniques may be applied. This technique
retains these variables as input to the model, rather than explicitly
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modeling them (see Section 3.4.1 for details). The ‘off-line’ nature
of the ubiquitous variables further reduces the complexity of the
symbolic model. Since fast optimization is desirable for the initial
stage, even if it is coarse, it is beneficial to employ the decoupling
technique, which converts the differential into algebraic equations.
The decoupling step involves the measurement of slopes, which
may be assessed directly or upon smoothing (Step w). Once the
symbolic model is decoupled, the parameters of each equation
can be estimated by some fast optimization algorithm (Step x).
Alternating regression (AR) was shown to be one of the algorithms
that work quite well for many S-system models. If AR converges,
the resulting model is ready for further analysis and evaluation.
If the initial guesses lead to lack of convergence, the algorithm is
restarted with a different set of initial guesses. Another option
for this step may be a collocation method. If the system topology
is not known or only partially known, algorithms or techniques
for inferring the network connectivity are applied. These include
prior linearization of the system dynamics or sorting of parameter
combinations by their empirical likelihood of inclusion in an equa-
tion (Step y; see Section 5 for detail). If the network topology is
not known, it is also necessary to choose an optimization algorithm
that does not depend critically on topological information; a suit-
able algorithm for BST models is eigenvector optimization (EO)
with prior decoupling (Steps z and s10 ). Algorithms permitting
ill-characterized system topologies are usually combined with
pruning methods that eliminate unlikely connections between net-
work components and reduce the number of parameters to be esti-
mated during the process of estimation. If the fast algorithms are
not able to yield acceptable fittings, some other, computationally
more expensive algorithms such as genetic algorithms or evolu-
tionary approaches are applied (Step s11 ). If the outcome of the ini-
tial fitting is not acceptable, the optimized parameter values may
be used as start values for subsequent refining algorithms. These
are typically more costly and may lead to better solutions,
although they are not necessarily always effective. A significant
consequence and advantage of the combination of approaches is
that the result often consists of multiple parameter sets that are
all consistent with the data and that can lead to new, testable
hypotheses and may offer guidance for further theoretical and
experimental investigation (Step s12 ). It may be possible that the
algorithms are not even able to produce acceptable fits (Step �13 ).
We will discuss this situation in detail in Section 7. Once the initial
models are obtained, the next step is dedicated to model analysis,
including model diagnostic and cross-validation as described in
Section 1. If the models are deemed reliable and appropriate for
the purposes of the modeling effort, they can be used for applica-
tions and for gaining a deeper understanding of the biological phe-
nomenon; specifically, they can be used to make predictions,
generate new hypotheses, or guide the design of additional biolog-
ical experiments (Step s). In contrast, a model analysis that indi-
cates lack of robustness or discrepancies between model and
observations reveals potentially fundamental problems in the
model. In this not so rare situation one needs to return to earlier
steps of the modeling process and refine the model in an iterative
manner. For instance, the modeler might need to discuss with the
expert biologists how to obtain additional information or identify
possible mistakes in the assumed model structure or missing reac-
tions or signals in the pathways. It may also be useful to resample
the data with jackknife or bootstrap methods and to redo the anal-
ysis in order to explore possible alternative solutions.

Most of the steps of the inverse modeling ‘work-flow’ can be
automated. For instance, it is relatively easy to check for collinear-
ities between time series once the data matrix is ready (Step s).
The full symbolic model of the system can be derived directly
and per computer if the number of variables in the model is known
[1]; (Step u). The slopes of the time series can be estimated di-
rectly or upon smoothing, using various algorithms (Steps w and
z). The actual parameter optimization is possible with many algo-
rithms based on the time series and the structure of the model
(Steps x, s10 , and s11 ). The network topology can be inferred giving
the data matrix and fully connected model (Step y). These more or
less automatic steps can be worked into a data pipeline, at least in
principle. Other steps are not as straightforward and thus require
manual intervention. For instance, even though methods of matrix
diagnostics in Step s point to collinearities in the data matrix,
pooling variables or reducing the redundancy in the model in Step
t requires some thought regarding the location of the affected
variables and their relationships in the pathway. Further model
reduction includes the decision of which variables to model explic-
itly, in cases where the model contains highly connected metabo-
lites. These ‘intelligent’ steps are required to reduce the network
topology and the corresponding symbolic model (Step v). Thus,
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the entire process is not yet fully automated and may always re-
quire human supervision. Nonetheless, some tools like Best-Kit
[239], Cadlive [240], BSTBox [1], and BioinformaticStation [241]
are beginning to provide interfaces that facilitate some of the steps
involved in metabolic modeling.

Once several candidate solutions are obtained, the immediate
question is whether there are reasonable guidelines for choosing
between them. Several scenarios are to be anticipated. If many
well-fitting solutions, either found with different optimization
methods or obtained using some re-sampling scheme, are clus-
tered closely within the parameter space, the solutions are
parametrically similar and the networks they represent are essen-
tially the same or very similar in structure. In contrast, if the opti-
mization yields distinctly different solutions, exhibiting essentially
the same residual error, it is a priori difficult to decide which model
is best. Recent results in one of our estimation studies showed that
a single dataset allowed multiple distinctly different numerical
solutions, especially if constraints on kinetic orders were set
loosely. This was not entirely surprising because even one-variable
S-systems are flexible enough to permit different parameter sets
generating very similar graphs (cf. [204,242–247]). Without addi-
tional information, each such parameter set is an equally valid
solution since it fits the data essentially equally well. However,
problems may arise if a ‘wrong’ solution is used for extrapolation
to new conditions, as we will discuss in Section 7. By basing the
estimation on many datasets and experimentally testing the same
pathway under different conditions, the problem can often be
alleviated, because the use of several datasets clearly constrains
the flexibility of the underlying model considerably.

In many cases, one will obtain several alternative solutions. In
other cases, the opposite may be true: in spite of the many options
outlined before, it is still possible that even a combination strategy
cannot find an acceptable fit. Potential reasons and suggested fu-
ture work are discussed in Section 7.
7. Open issues

As mentioned in Section 3.4 and in the previous section, the
challenges of inverse modeling can be classified into issues related
to data, model structure, computation, and mathematical features
of the representation. Most of the recent articles have acknowl-
edged and discussed various computational issues in great detail
and some have addressed data and model related issues. However,
there has been little discussion of model validity and quality be-
yond residual errors, the conditions under which the models can
be obtained, and diagnostic tools for non-convergence or for situ-
ations where models cannot even be obtained with any degree of
reliability.

These open issues fall into two categories. First, even if the algo-
rithms are able to find a set of candidate models, it is possible that
none of these models is acceptable for one reason or another. For
instance, it may happen that model diagnosis and simulation stud-
ies reveal that none of the models are stable, that they are all
overly sensitive, or that they do not exhibit reliable predictive abil-
ity. Other problems are lacking model fit for data not used in the
estimation and model failure in extrapolations. Second, it is possi-
ble that the algorithms are not even able to produce acceptable fits.
In these cases, the failure is usually imputed to the computational
algorithms themselves. However, the sources of the problem may
lie in a combination of the alleged model structure, the particular
datasets, and the computational methods, and it is advisable to ex-
tend the diagnosis beyond the algorithmic techniques.

Following are some of the issues that should be addressed to
improve the validity and reliability of the estimated model, beyond
residual errors and computational efficiency.
1. Data related issues: Even though good smoothing techniques can
solve part of the problem of missing data points or time series,
effective diagnostic tools for checking consistency within data
are still needed. One special property in modeling metabolic
networks is that the mass of metabolites is conserved during
the reaction. Therefore, by accounting for material flows enter-
ing and leaving each metabolite pool, one may be able to iden-
tify flows which might have been unknown, considered
unimportant, or difficult to measure in the experiment. Further-
more, methods for assessing whether residual errors are due to
idiosyncrasies or noise in the data are needed. Also, statistical
methods need to be developed for determining the necessary
number and density of time points in each dynamic profile. This
determination may require stronger, practically applicable def-
initions for the complexity of a dynamic response.

2. Model related issues: Traditionally, when a mathematical frame-
work is chosen for modeling, the fluxes in the metabolic path-
way are represented using the same basis functions, such as a
Michaelis–Menten or power-law representation. However, it
is possible that not all fluxes are appropriately modeled by
the same format; an example is the substrate uptake step in
bacteria, which is likely to follow different mechanisms than
enzyme catalyzed reactions (e.g., [21]). It is well known that
all mathematical representations of biological processes are
local approximations that are guaranteed only in the vicinity
of operating point. If the metabolite concentrations do not fall
within small ranges, the model may or may not properly repre-
sent the dynamics. This situation becomes particularly impor-
tant when a single model is used for more than one set of
time series, each of which represents different experimental
conditions. Good criteria for determining the appropriateness
of the chosen mathematical representations are still lacking.
Sections 4 and 5, as well as Table 3, indicated that many of
the recent parameter estimation and structure identification
methods were developed specifically for S-system models and
that comparatively few studies targeted GMA models. As
described in Section 2.3.3, the main reason is the highly struc-
tured format of S-system models, which sometimes allows eas-
ier and more specific methods of optimization (see, for instance
[37,159,202]). Nonetheless, GMA models are considered to be
closer to biochemical intuition than S-systems and are therefore
often preferred by biochemists for modeling metabolic pathway
systems. Thus, the development of inverse algorithm for GMA
models would be highly desirable in the future.

3. Mathematical issues: It has been observed many times that sev-
eral solutions may be found for a given dataset and a selected
model. One reason may be mathematical redundancy. Redun-
dancies may occur within or between fluxes and within or
between equations. Compensation between fluxes can be iden-
tified to some degree if it is possible to estimate each flux in
addition to estimating an entire equation [21]. Solutions for
numerical compensation within a single flux are still needed.
They seem to require data covering relatively wide ranges of
variation, multiple datasets or additional information about
some of the parameter values. In addition to numerical com-
pensation it is possible that models contain Hamiltonians, con-
served quantities or symmetry groups, which permit
completely equivalent solutions with different parameter set-
tings. Some of these issues have been discussed in the context
of BST [129–131].

Finally, one should emphasize the need for obtaining reliable
solutions within short periods of time. In some cases, only a single
estimation of the system may be needed, and it may be acceptable
if this estimation takes several hours. However, once the field
moves toward ‘estimation on the fly,’ solutions must be obtained
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within a few minutes or, preferably, within seconds. The need for
fast solutions becomes especially pertinent if biologists and model-
ers together engage in concept map modeling, which permits the
conversion of hypothesized network diagrams into numerical
mathematical models [1]. Specifically, based on the known or
hypothesized connectivity and regulatory information regarding
the investigated system, the biologist designs a concept map con-
sisting of a connectivity diagram of processes comprising the sys-
tem and including known or assumed regulatory features, and
provides semi-quantitative information on stimuli and measured
or expected responses of the system. The modeler converts this
information through combined methods of forward and inverse
estimation into a mathematical construct that can subsequently
be used for typical model analyses and to generate and test new
hypotheses. This conversion step, which includes parameter esti-
mation from time series, needs to proceed fast in order to permit
interactive work, in which the modeler runs simulations with the
model and the biologist-modeler team collaboratively interprets
the results and devises improved concept maps. Because this
method heavily depends on the biologist’s initial intuition and
hypotheses, many iterations between hypothesis formulation and
diagram-to-model conversion are needed, thus demanding fast
solutions that might not be absolutely precise but allow the inter-
active exploration of complex biological systems.

Whether bottom-up, top-down or concept map modeling is the
method of choice, we hope to have conveyed that the estimation of
model parameters and the identification of structure and regula-
tion of ill-characterized biological systems is a vibrant field that
will continue to offer challenges to teams of biologists, mathema-
ticians, computer scientists and modelers throughout the foresee-
able future.
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