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Abstract
Background: Protein-protein interactions are ubiquitous and essential for all cellular processes.
High-resolution X-ray crystallographic structures of protein complexes can reveal the details of
their function and provide a basis for many computational and experimental approaches.
Differentiation between biological and non-biological contacts and reconstruction of the intact
complex is a challenging computational problem. A successful solution can provide additional
insights into the fundamental principles of biological recognition and reduce errors in many
algorithms and databases utilizing interaction information extracted from the Protein Data Bank
(PDB).

Results: We have developed a method for identifying protein complexes in the PDB X-ray
structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces;
(2) clustering similar protein-protein interfaces together; (3) estimating the probability that each
cluster is relevant based on a diverse set of properties; and (4) combining these scores for each
PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant
interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These
interfaces, as well as the predicted protein complexes, are available from the Protein Interface
Server (PInS) website (see Availability and requirements section).

Conclusion: Our method demonstrates an almost two-fold reduction of the annotation error
rate as evaluated on a large benchmark set of complexes validated from the literature. We also
estimate relative contributions of each interface property to the accurate discrimination of
biologically relevant interfaces and discuss possible directions for further improving the prediction
method.

Background
Proteins usually accomplish their biological functions as
components of stable complexes or through transient
interactions with other proteins. The most detailed exper-
imental information on protein complexes comes from
high-resolution X-ray structures. These structures provide

clues on the mechanism by which the complex accom-
plishes its function, give insights into the physical and
evolutionary principles of protein-protein interactions
through statistical analysis [1-4], and can be used as tem-
plates for the computational prediction of protein-protein
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interactions using docking [5] or threading [6,7] tech-
niques.

Because protein crystals contain a regular array of mole-
cules it is a nontrivial task to determine which molecules
form the biologically relevant complex. Only a subset of
the molecules in the asymmetric unit or additional mole-
cules related by space group transformations may be
included in the complex. Although Protein Data Bank
(PDB) files contain information on generating the biolog-
ical complex (BIOMT records), this information is error
prone. An approximate lower bound, which is discussed
in the Results section, suggests that the error rate for
BIOMT annotation is at least 9%. This means that struc-
tural studies, such as those mentioned above, must
depend on either small but reliable manually curated sets
of protein complex structures or on large but significantly
less reliable automatically generated sets.

Computational methods that predict the biological com-
plex for an X-ray structure can improve the reliability of
complex annotations. The earliest methods were applied
only to the more limited problem of distinguishing
homodimers from monomers by using a variety of differ-
entiating features: interface area and atomic pair contacts
[8], fraction of surface residues in the interface and evolu-
tionary conservation [9], and a combination of non-polar
interface area, fraction of buried interface atoms, and res-
idue propensity score [10]. A more general method,
described in [11], used scores based on atom pairs that
contact across interfaces combined with iterative parti-
tioning of the graph representing crystal contacts in order
to predict complexes. This method gave a 16% error rate
on a non-redundant set of 218 X-ray structures. The Pro-
tein Quaternary Structure (PQS) server [12,13] discrimi-
nates biological and crystal contacts based on a weighted
score computed from the interface accessible area,
number of interface residues, solvation energy, and the
number of salt bridges and disulphide bonds. Finally, a
new prediction method and web server, PISA [14,15], was
introduced during the course of this work. That method
used an empirical estimate of both enthalpic and entropic
contributions to the binding free energy in order to pre-
dict stable complexes. Small ligands were also included in
the free energy calculation. Although there are many
online databases that contain analyses of protein complex
structures obtained from other sources [16-22], such as
BIOMT annotation or PQS, there are currently only two
other databases that contain predictions of complexes for
the entire PDB, namely PQS and PISA. The lack of many
independent prediction databases is probably due to the
difficulty in predicting complete protein complexes and is
one motivation for this work.

We have developed a new method for identifying biolog-
ical relevant protein complexes in X-ray structures and
demonstrate a significant reduction in the annotation
error rate. In addition, our database (the Protein Interface
Server (PInS), see Availability and requirements section
for URL), contains a useful byproduct – a new classifica-
tion of all protein contacts (biologically relevant and crys-
tallographic) found in the PDB. First, protein-protein
interfaces are grouped by similarity and all interfaces in a
particular cluster are either all predicted to be specific
(biological) contacts or non-specific (crystal) contacts.
Crystal contacts are defined to be protein-protein inter-
faces that only occur in the non-physiological environ-
ment of the crystal (e.g. high protein concentration, low
temperature, and compounds added to aid crystalliza-
tion). Because all interfaces in a cluster containing biolog-
ical interfaces are between proteins with similar amino
acid sequences and have similar binding geometry, they
presumably arose through evolutionary divergence. Thus
they provide a valuable resource for studying how similar
interfaces appear in different complexes of diverse func-
tions. Second, the protein-protein interface clusters are
classified by a machine learning method that utilizes a
robust set of diverse interface properties. Previously we
demonstrated that a similar set of properties was sufficient
to distinguish near-native docked conformations in a
large set of decoys [5]. The combination of a large set of
properties and a more sophisticated statistical model is
expected to yield more accurate interface predictions.
Third, the prediction method incorporates all PDB struc-
tures (as we are using interface clusters across the PDB)
rather that making a separate prediction on individual
structures. This means that information from multiple
structures is combined to make the prediction of each
complex. Finally, we derive the overall complex structure
by a rigorous probabilistic framework that combines the
probability scores from the interface predictions with
probabilities derived from the PDB annotation.

Methods
Benchmark set of protein complex structures
A non-redundant benchmark set of 435 complex struc-
tures was created by combining the sets of [11] and [3],
removing redundant complexes, and adding an addi-
tional 200 unrelated complexes, where all annotations
were manually verified from an extensive search of the lit-
erature. PDB entry 1MDA from the Ponstingl et al. 2003
set was not included because four chains (H, J, L, M) were
found to have incorrect amino acid sequences. The 200
additional complexes were iteratively added by randomly
choosing a complex such that no two complexes in the
combined set had corresponding subunits with > 25%
sequence identity. The best quality structure, with the
fewest chain breaks and mutations and highest resolution,
was chosen among all PDB structures of the same com-
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plex. Furthermore, the literature, starting from the original
article for the X-ray structure, was examined in order to
identify the structure of the relevant protein complex and
to insure that the prevalent oligomeric state of the com-
plex in solution was experimentally verified and agreed
with the structure. This set was used for training and vali-
dating the Random Forest classifier for protein-protein
interface prediction and for assessing the overall predic-
tion accuracy for complexes. The set is available, together
with the annotations and prediction results [see Addi-
tional file 1].

Protein-protein interface prediction data
Protein-protein interfaces were predicted to be either bio-
logically relevant contacts or crystal contacts using a Ran-
dom Forest classifier [23] trained on diverse interface
properties. The interface properties are the following: 210
contacting residue pair counts, 20 residue propensity
log(p) values, evolutionary conservation log(p), interface
area, number of intermolecular hydrogen bonds and
disulfide bonds, packing density, homo- or hetero-inter-
face, and symmetric or non-symmetric interface. Both the
residue-level [4] and atomic-level properties [11] were
previously shown to distinguish protein-protein inter-
faces. Contacting residues had at least one pair of non-
hydrogen atoms, one in each residue, separated by less
than 4 Å. Only interfaces with at least 5 intermolecular
residue contacts were included in the prediction data. The
residue propensity log(p) values reflect the number of
each residue type occurring in the interface compared
with the number expected from a random reshuffling of
residue types on the surface. This results in a probability
that is calculated from a hypergeometric null distribution,
as described in [4]. The interface area was defined as
0.5(SASA of protein 1 + SASA of protein 2 – SASA of both
proteins), in which the solvent accessible surface area
(SASA) was calculated with the DSSP program [24]. The
number of intermolecular hydrogen bonds was deter-
mined by adding hydrogen atoms and optimizing their
geometry using the ICM program [25] and counting the
number of potential hydrogen donor/acceptor pairs
within 2.5 Å of each other. Intermolecular disulfide bonds
were defined by two cysteine residues with S-S separations
between 1.5 Å and 2.5 Å. The packing density was calcu-
lated as SASA0/(solvent excluded surface area), in which
SASA0 is the SASA with a zero probe sphere radius and the
solvent excluded surface is calculated using a 1.4 Å radius
probe sphere. The evolutionary conservation of each resi-
due was defined as the column entropy S for a multiple
alignment of similar sequences

in which fi are the residue frequencies in the correspond-
ing alignment column. The multiple sequence alignment
was generated by collecting similar sequences from the
NCBI nr database using BLAST [26] with the protein
sequence of interest as a query and an E-value cutoff of
0.01, removing redundant sequences with > 90%
sequence identity using the Cd-hit program [27], and
finally aligning them using MUSCLE [28]. The evolution-
ary conservation p-value, which reflects the probability of
observing more highly conserved residues in the interface
than in the remaining protein surface by chance, was cal-
culated with the Wilcoxon rank-sum test [29]. Finally,
whether or not the interface was symmetric, i.e. possesses
two-fold crystallographic symmetry, was included in the
interface properties because it is a common feature of
homodimers.

Clustering similar interfaces
Similar protein-protein interfaces were clustered into
groups. Essentially those groups are groups of identical
(or almost identical) structures, where corresponding res-
idues are globally aligned. All interfaces in a particular
group are assigned to be either all crystal contacts or all
biological interfaces (details below in the Clustering proce-
dure section). Previous studies have used various criteria
to cluster protein-protein interfaces by similarity
[16,19,30], but one important innovation in our method
is the use of such clusters to make consistent predictions
of biological interfaces and consequently consistent pre-
dictions of biological complexes across the PDB.

Assigning Pfam residue-residue contacts
PDB residue numbers are inconsistent in general, i.e. the
same residue in different structures of the same protein
may have different numbers. Because of this, they cannot
be used directly in order to compare residue-residue con-
tacts in different structures. Therefore residue numbers
were made consistent by mapping them to either the cor-
responding Pfam [31] alignment column number or, if no
Pfam assignment is possible, by the residue index of the
most similar Uniprot sequence [32]. Hereafter the combi-
nation of the Pfam family accession number and align-
ment column number (or Uniprot accession number and
sequence index) is denoted as the uniform residue
number. This also insures that aligned residues in homol-
ogous protein sequences are designated by the same
number. PDB sequences were first aligned to the most
similar Uniprot sequence, which was determined by per-
forming a BLAST search of Uniprot amino acid sequences
and choosing the Uniprot sequence with highest sequence
identity to the query PDB sequence. Next the correspond-
ence between the Uniprot and Pfam sequence was
deduced from the full multiple alignment of Uniprot
sequences used to define each Pfam family. Because
breaks in the protein sequence in a PDB structure may

S f fi i

i
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=
∑ log
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(1)



BMC Bioinformatics 2008, 9:234 http://www.biomedcentral.com/1471-2105/9/234

Page 4 of 11
(page number not for citation purposes)

lead to alignment errors near the breaks, each contiguous
segment of the protein chain was separately aligned to the
corresponding Uniprot sequence using the EMBOSS pro-
gram needle for global pairwise sequence alignment [33].

Next the set of contacting residue pairs (< 4 Å atom sepa-
ration) in each protein-protein interface was calculated
with the residues referred to by their uniform residue
number. All original protein chains as well as symmetry-
related chains within 25 Å of any of the original chains,
with the inter-chain separation defined by the minimum
distance between non-hydrogen atoms in each chain,
were included in order to insure all interfaces for the com-
plete biological complex are present. The symmetry-
related molecules were generated using PyMOL [34].

Clustering procedure
Interfaces were then clustered so that the minimum frac-
tional residue contact overlap O, defined by

was at least 0.3 between any two interfaces in the same
cluster. N(interface i contacts) denotes the number of con-
tacting residue pairs in interface i and the numerator is the
number of common contacting residue pairs. This overlap
cutoff value is actually a rather strict requirement as resi-
dues in the interfaces make multiple contacts with each
other, so that when 30% of all contacts are the same
between two interfaces it is very unlikely that the inter-
faces are unrelated. Although clustering a large number of
interfaces would be computationally expensive, the clus-
tering problem can be subdivided into manageable sub-
problems. First identical interfaces, with the same
proteins and same relative space transformation, within
each PDB complex were rapidly identified and grouped.
Next, all non-identical interfaces throughout the PDB
were clustered using hierarchical complete linkage cluster-
ing with distance measure 1-O and the largest clusters
with O � 0.3 were selected. This task was subdivided by
clustering only groups of interfaces with the same pair of
Pfam accession numbers since the overlap between inter-
faces with different Pfam numbers is zero by definition.
This clustering reduced the 254879 non-identical protein-
protein interfaces into 58274 clusters. Identical protein-
protein interfaces, which have the same residue-residue
contacts between the same proteins, have fractional resi-
due contact overlap O = 1.0 and are therefore trivially
assigned to the same cluster.

Random Forest classifier
The Random Forest method uses the consensus prediction
from an ensemble of randomized decision trees for classi-

fication [23]. It was chosen for interface prediction
because of several desirable properties: resistance to over-
fitting, speed, the ability to use combinations of continu-
ous and discrete data, and insensitivity to data
normalization. The randomForest package in R was used
[35,36]. Approximately 15% of the benchmark set inter-
faces had missing evolutionary conservation data because
a sufficient number of homologous sequences (at least
20) could not be found. Missing data values were first
imputed by the median value of that variable. The input
data included all interface properties described in Protein-
protein interface prediction data.

Each protein-protein interface was classified as either a
specific contact appearing in a biological complex or a
non-specific crystal contact. The variation of the Random
Forest score within each cluster was estimated by calculat-
ing the standard deviation in the score within a sample of
interfaces of intermediate size. All 93 clusters containing
exactly 20 interfaces were chosen for this purpose. The
average of the standard deviation in the scores within each
cluster was found to be only 0.04. Because the intra-clus-
ter score variation is so small and also to speed up the cal-
culation, predictions were made for only a single
randomly chosen interface in each cluster and all inter-
faces in the cluster were assigned to the same class, as
described above. A total of 1000 classification trees gener-
ated from 20 random chosen variables were used in the
Random Forest classifier. As expected [23], the prediction
accuracy was largely insensitive to these model parameters
(data not shown).

A Random Forest score was calculated as the fraction of
trees that classify the interface as a biological interface. All
other interfaces in the same cluster, which were not used
with the Random Forest classifier, were then also assigned
this score.

Cross-validation procedure
Prediction performance was assessed using 10-fold cross-
validation. The 2006 interface clusters appearing in the
benchmark set were randomly divided into 10 approxi-
mately equal size test sets. Predictions were then made for
each test set in turn using a Random Forest classifier
trained on the remaining interface data in the other 9 sets
and the prediction statistics calculated. This procedure
prevents overly optimistic performance estimates due to
overfitting. Predictions for structures not included in the
benchmark set were made using a Random Forest classi-
fier trained on data for all interface clusters in the bench-
mark set.

O
N

N
= ∩(

min
interface 1 contacts  interface 2 contacts)

interfaace 1 contacts , interface 2 contacts( ) ( )( )N

(2)
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Estimating the contribution of each interface property to 
prediction accuracy
One further advantage of the Random Forest classifier is
the ability to quickly estimate the contribution of each
input variable to the overall prediction accuracy. This is
accomplished by calculating the average decrease in accu-
racy for data upon permuting the values for the variable of
interest. This can be efficiently calculated because only the
so-called out-of-bag data is used (data not included in the
bootstrap sample) [23]. Because the benchmark set data is
significantly unbalanced, the variable importance was cal-
culated using a balanced set of data, containing all 436
specific interface examples and an equal number of ran-
domly selected non-specific interface examples. The
importance for two groups of variables, all 20 residue pro-
pensity log(p) values and all 210 contacting residue pair
counts was calculated using an alternative procedure
because importance for groups of variables is not imple-
mented in the randomForest package. In this case, the 10-
fold cross-validation accuracy was compared with the
accuracy obtained by permuting the variables of interest
in the cross-validation test data sets. The accuracy differ-
ence was then averaged over 100 independent calcula-
tions.

Prediction of the protein complex
Overall, the prediction procedure for the protein com-
plexes combines local information from the Random For-
est interface prediction scores with global information
from the number of subunits in the BIOMT complex using
a consistent probabilistic framework. The prediction is
performed by maximizing the total probability over all
structures simultaneously so that, in general, information
from multiple structures contributes to the prediction of
each individual complex.

Interface contribution to the total probability
The Random Forest scores for each interface in a predicted
complex need to be converted into probabilities in order
to calculate the total likelihood that the complex is cor-
rect. This was accomplished by separately fitting the score
distributions for biological interfaces (Pspecific (S)) and
crystal contact interfaces (Pnon-specific (S)) in the bench-
mark set using gaussian kernel density estimation. The
resulting smooth distributions are shown in Figure 1.

The local interface component of the score for each partic-
ular complex can be obtained for each possible interface
assignment (specific or non-specific) by computing the
following product over all unique interface clusters in the
predicted complex.

This equation assumes that the probabilities for each
unique interface are independent. This is a very good
approximation, because we cluster all similar interfaces
together, and interfaces in a cluster are either all assigned
as specific or all assigned as non-specific. It is not possible
to consider as independent closely related interfaces
within clusters.

BIOMT contribution to the total probability
Even though the BIOMT annotation in the PDB files,
which specifies how to generate the biological complex, is
error-prone, it is still often correct and thus provides valu-
able information for predicting the complex. Therefore a
predicted complex whose oligomeric state agrees with the
BIOMT annotation should be assigned a higher likeli-
hood to be correct than one with a different oligomeric
state. We have chosen the number of subunits in the com-
plex as a criterion of such agreement because often the
only independent experimental information on the com-
plex, aside from the crystal structure itself, is its oligomeric
state as measured by, for example, chromatography.

The probability that the number of subunits in the BIOMT
complex (NBIOMT) agrees with the number of subunits in
the actual complex (N) is

P(N = NBIOMT) = P(BIOMT correct) + P(NBIOMT | BIOMT 
correct)P(BIOMT incorrect) (4)

P P S P Si

C

i

C noni i

Si specific

specific

non-specific

s
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∏
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∏

(3)

Estimated probability density function for the Random Forest scores in each classFigure 1
Estimated probability density function for the Ran-
dom Forest scores in each class.



BMC Bioinformatics 2008, 9:234 http://www.biomedcentral.com/1471-2105/9/234

Page 6 of 11
(page number not for citation purposes)

If the probability of observing NBIOMT subunits by chance

is estimated by the fraction of all possible complexes,

resulting from all  different possible interface
assignments, that have NBIOMT subunits then Equation 4

becomes

in which N(i subunits) is the number of predicted com-
plexes with i subunits out of all possible predicted com-
plexes.

There are two different ways in which N can agree with
NBIOMT: either the BIOMT complex is correct (first term in
Equations 4 and 5) or the BIOMT complex is incorrect and
the number of subunits agrees by chance (second terms in
Equations 4 and 5). The value of P(BIOMT correct) is
approximated by its upper bound due to consistency
(0.91) discussed above. The BIOMT contribution, PBIOMT,
to the overall likelihood of the predicted complex can be
then calculated based on the number of unique subunits
observed in the prediction as P(N = NBIOMT) from Equa-
tion 5, if N = NBIOMT, or 1 - P(N = NBIOMT), if N � NBIOMT.

Total probability for each predicted complex
The probability for a particular complex is calculated as
the product of the BIOMT contribution, PBIOMT, (reflecting
global information captured in Equation 5) and the local
interface contribution, P({Si}), in Equation 3. The total
likelihood of a particular interface assignment is the prod-
uct of the probabilities over all complexes considered.

The set of protein complex subunits and resulting protein
complexes may be represented by a graph in which each
node corresponds to a particular subunit and edges join
contacting subunits. There are two types of edges in the
graph: specific (i.e. biological contact) or non-specific (i.e.
crystal contact) interfaces between the two corresponding
subunits. For a particular assignment of the interfaces, the
component of the graph that (1) is connected by specific
contacts, (2) contains at least one subunit in the asymmet-
ric unit, and (3) contains all unique subunits is the pre-
dicted complex. Because the interfaces in a cluster are
considered either all specific or all non-specific there are

 different possible interface assignments in which
Nclusters is the total number of clusters.

A constraint is imposed so that each predicted complex is
required to include each non-redundant protein chain in
the X-ray structure at least once. This is required because
presumably each structure contains a single biologically
relevant complex and not a collection of proteins that
form multiple non-interacting complexes. In the few cases
in which a consistent assignment of interfaces clusters that
satisfies this constraint does not exist, only the assign-
ments that minimally violate the constraint (have the
fewest structures that violate it) are considered.

Prediction of protein complexes using maximization of the 
total likelihood

The assignment of interface clusters as either specific or
non-specific and the resulting predictions of biological
complexes are then accomplished by maximizing the total
likelihood over all possible interface cluster assignments
subject to the aforementioned constraint. Because there
are 58274 clusters and the number of possible interface

assignments is  (for each interface specific or non-
specific), it is fortunate that the optimization problem can
be broken down into independent subproblems.

This is done by generating a graph in which each node
represents a cluster and edges are placed between two
nodes for clusters co-occurring in any structure. Next, all
connected components in this graph are determined.
Independent optimizations are then performed for each
set of interface clusters corresponding to nodes present in
a single connected component. The optimization was
done by exhaustive enumeration of all interface cluster
assignments in subproblems with � 15 interface clusters
and otherwise using a Monte Carlo algorithm employing
Metropolis sampling with a temperature parameter of 0.4.
The vast majority of subproblems (92%) could be exactly
solved by the former method.

Results and Discussion
Protein-protein interface prediction performance
The performance of the Random Forest classifier in pre-
dicting protein-protein interfaces was assessed by plotting
the Receiver Operator Characteristic (ROC) curve for the
10-fold cross validation results on the benchmark set. The
ROC curve, shown in Figure 2, displays the tradeoff
between prediction sensitivity and specificity. The Ran-
dom Forest score cutoff is the parameter that is varied
along the curve. The value of 0.945 for the area under the
ROC curve is near the maximum value of 1.0 and demon-
strates the high prediction accuracy.

Contributions of interface properties to prediction 
accuracy
As described in the Methods section, the importance of
each interface property to the overall Random Forest pre-

2N clusters

P N N P

P
N NBIOMT

BIOMT=( ) ≈ ( )

+ − ( )( )
BIOMT correct
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1
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diction accuracy can easily be calculated. This can give
insight into which properties are most useful in discrimi-
nating specific protein-protein interfaces from non-spe-
cific interfaces and provide guidance for future prediction
efforts.

First we compare the relative importance of individual
properties using the out-of-bag data. The properties mak-
ing the largest contribution to the prediction accuracy,
along with their relative importance, are listed in Table 1.

The interface area makes the largest contribution to the
prediction accuracy. Its importance in discriminating spe-
cific protein-protein interfaces has been noted in earlier
studies [8,12,37]. Of course, any criteria used to select
which interfaces are included in the training data will
affect the relative contribution of each interface property
to the prediction accuracy. As mentioned in the Methods
section, all interfaces were required to have at least 5 inter-
molecular residue contacts. This excludes many interfaces
with low interface area, but is still quite permissive. If the
cutoff on the number of residue contacts were increased
or if a high cutoff on the interface area were applied, it is
expected that the importance of the interface area would
decrease because this would exclude small interfaces with
low surface area, most of which are non-specific.
Although specific interfaces in dimers typically have an
area of at least 350 Å2 [38], smaller interfaces are often
present in higher order complexes. The motivation for
applying a relatively lax cutoff on interface size is to avoid
removing small specific interfaces and to allow the Ran-
dom Forest classifier to select the specific interfaces based
on interface area, in addition to the other interface prop-
erties, rather than employing a hard cutoff.

The number of intermolecular hydrogen bonds gives the
second largest contribution (55%) to the prediction accu-
racy. This is expected since it is highly correlated with the
interface surface area [38,39], with a correlation coeffi-
cient of 0.89 for the benchmark set data. Hydrogen bonds
provide both favorable energetic contributions as well as
specificity to the interaction [40].

The 210 residue contacting pair counts and the 20 residue
propensities, each considered as groups of variables, con-
tributed 22.4% and 18.4%, respectively. Examining the
importance the propensities for each residue type reveals
that the largest contributions are from leucine, phenyla-
lanine, isoleucine, tyrosine, and valine, in decreasing
order of importance. A previous study that used the same
statistic as a measure of the propensity of particular resi-
due types to appear in protein-protein interfaces also
found that these were some of the most prevalent in inter-
faces [4]. The contacting residue pairs that contributed the
most to the prediction accuracy were L-V, L-Q, L-L, D-R, A-
Y, L-Y, V-V, F-I, R-Y, and L-P, in decreasing order of impor-
tance. All of these contacts involve at least one of the
important residue types, except for D-R, which can poten-
tially form a salt bridge.

Protein complex prediction performance
The performances of different prediction methods were
evaluated by counting the number of correctly predicted
protein complexes having the correct stoichiometry, or
oligomeric state. A total of 46 out of the 435 benchmark
set complexes were incorrectly predicted, resulting in an

Table 1: Relative importance of interface properties to the 
Random Forest accuracy for discriminating specific and non-
specific protein-protein interfaces. 

Interface Property Relative Importance

interface area 1.0
number of intermolecular hydrogen bonds 0.553
210 contacting residues pair counts* 0.224
20 residue propensities* 0.184
evolutionary conservation 0.168
leucine residue propensity 0.104
phenylalanine residue propensity 0.0950
symmetric/non-symmetric interface 0.0896
isoleucine residue propensity 0.0753
packing density 0.0665
tyrosine residue propensity 0.0619
number of leucine-valine contacts 0.0570
Number of leucine-glutamine contacts 0.0500

All properties with a relative importance of at least 0.05 are shown. 
An asterisk indicates a group rather than individual properties.

ROC curve for the Random Forest prediction of benchmark set interfaces using 10-fold cross-validationFigure 2
ROC curve for the Random Forest prediction of 
benchmark set interfaces using 10-fold cross-valida-
tion. The high prediction accuracy is shown by an area under 
the curve as high as 0.945.
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error rate of only about 11% for our method. The error
rate for the subset of 214 benchmark set complexes taken
from the Ponstingl et al. 2003 set was 13%. This is slightly
lower than the 16% error rate reported in that study. We
also calculated the error rates for PQS and PISA predic-
tions for comparison. One potential difficulty with this is
that both of these databases contain multiple predictions
for some PDB entries. This is not a significant problem for
PQS since only 3 of the 75 PDB entries in the benchmark
set with multiple predicted complexes had different oligo-
meric states, which is the basis for our evaluation of pre-
diction results. Only the most stable predicted complex
for each PDB entry was used to calculate the error rate for
PISA, and furthermore only the total number of subunits
in each complex was compared, because only these results
were available for automatic download. There were
between 75 and 78 incorrect predictions for PQS, depend-
ing on which of the multiple predicted complexes were
chosen for comparison, yielding an error rate of approxi-
mately 17%–18%. A total of 104 of the predicted PISA
complexes disagreed, giving an error rate of approxi-
mately 24%. Unfortunately, this value is not directly com-
parable with that for our method for the reasons
mentioned above. However, the PQS error rate is signifi-
cantly higher, even after accounting for the few PDB
entries with multiple predicted structures.

A comparison of the predicted protein complexes with
those generated from the PDB annotation revealed that a
total of 17% of the predicted complexes are different, i.e.
have different stoichiometry. A further breakdown of
these complexes by type is shown in Table 2. It is apparent
that there are considerably more complexes that are pre-
dicted to be homomultimers but in the BIOMT record
they are annotated as monomers than the converse. One
possible explanation is that X-ray structures of a single
protein are annotated as a monomer by default if no
experimental information on their oligomeric state is
available. Figure 3 shows an example of one such case in
which the complex structure was successfully predicted
but the PDB annotation was incorrect. Unfortunately, the
large number of PDB entries with disagreements between

the predicted complexes and PDB annotation precludes
manual verification of their correctness.

Analysis of domain contacts in predicted biological 
complexes
The prediction method for protein complexes also yields
clusters of related protein-protein interfaces found in bio-
logical complexes. These predicted Pfam-A domain-
domain contacts were compared with those in the iPfam
[41] and 3DID databases. The overlap between the differ-
ent sets of domain-domain contacts in each database is
shown in Figure 4. This figure does not include the addi-
tional 4248 distinct Pfam contacts containing a Pfam-B
domain that are present in the predicted biological com-
plexes but not included in either iPfam or 3DID. Interest-
ingly, Pfam domain-domain contacts are predicted very
differently in the iPfam and 3DID databases. This differ-
ence alone is a strong indication that further analysis is
needed.

Indeed, the iPfam database includes all contacts, both
specific and non-specific and the 3DID database used an
empirical residue contact score to remove possible non-
specific contacts. Even more importantly, neither of these
databases includes symmetry-related chains so that many
specific contacts are necessarily missing as they simply are
not included for consideration. Our algorithm aims to
include only specific contacts in predicted biological com-
plexes, and we take special care to enumerate all contacts
observed in the X-ray crystal structures by applying the
necessary symmetry operations. Of course, biological
applications relying on these databases are mostly inter-
ested in the biologically relevant domain interactions
rather than crystal contacts.

Online database of protein complexes
A searchable database of all predicted protein complexes
is available online (see Availability and requirements sec-
tion for URL). Search fields include the PDB entry name,
text in the complex or subunit description, interface clus-
ter number, or the Pfam accession number. The complex
structures matching the query are presented both explic-
itly as three-dimensional structures and schematically as

Table 2: Number of PDB entries for which the stoichiometry of the predicted complex differs from that of the complex specified by 
the PDB BIOMT annotation. 

Predicted complex Complex from PDB BIOMT annotation Number of PDB entries

monomer homomultimer 678
homomultimer monomer 2042
homomultimer homomultimer 1029
heteromultimer heteromultimer 1115

Total 4864

Each complex is classified as either monomer, homomultimer (> 1 identical subunits), or heteromultimer (> 1 non-identical subunits).
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graphs in which nodes represent subunits and edges rep-
resent contacts (see Figure 5). In addition, all data files are
directly available for download by FTP.

Conclusion
High-resolution structures provide unique information
about biological complexes, which is not available by any
other experimental or theoretical method. In addition to
being the most reliable evidence for the existence of the
complex, high-resolution structures give clues about func-

tional mechanisms, elucidate stoichiometry require-
ments, and allow functional comparisons with orthologs
from other species. In many cases a high-resolution struc-
ture can be used to guide further experimental work, e.g.
discovery of small molecules modulating the formation
or function of the complex.

The reconstruction of a complete biological subunit
proved to be a complex computational problem both due
to the amount of the required technical work (e.g. many
contacts occur outside of elementary crystal cell, so that all
symmetries must be carefully analyzed) and due to funda-
mental difficulties of differentiating between biological
and non-biological contacts. Separate questions arise
from the presence of incomplete protein complexes. In
those cases the crystallized assembly is only part of true
biological complex. The PDB BIOMT annotation is
known to contain a large number of incorrect annota-
tions, and two other previously developed approaches
(PQS [12] and PISA [14]) provide alternative annotations.
The validity of this information is very important, as it is
utilized in a large number of other databases without
modification and without any further critical analysis.
These derived databases are used for comparative genom-
ics studies, reconstruction of cellular pathways, etc. and
the errors introduced at the annotation stage adversely
affect all results derived from them.

Our method has demonstrated an almost two-fold reduc-
tion of the error rate for predictions on a large set of 435
protein complexes manually assigned through analysis of
available biological literature. The error rate for our
method was 11% as compared with error rates of 17–18%
for PQS and approximately 24% for PISA. There was also

Schematic graph representation of the predicted homohex-amer complex for E. coli phosphopantetheine adenylyltrans-ferase (PDB entry 1B6T)Figure 5
Schematic graph representation of the predicted 
homohexamer complex for E. coli phosphopanteth-
eine adenylyltransferase (PDB entry 1B6T). Nodes 
represent subunits, denoted by their chain name and symme-
try transformation, and edges represent inter-subunit con-
tacts in the complex.

Correct predicted �2�2 structure for a bacterial nitrile hydratase from a PDB structure (entry 1UGQ) that is incor-rectly annotated as a heterodimerFigure 3
Correct predicted �2�2 structure for a bacterial 
nitrile hydratase from a PDB structure (entry 
1UGQ) that is incorrectly annotated as a het-
erodimer.

Venn diagram of the number of common Pfam-A domain family contacts in the predicted biological complexes, in the 3DID database, and in the iPfam database (version 21.0)Figure 4
Venn diagram of the number of common Pfam-A 
domain family contacts in the predicted biological 
complexes, in the 3DID database, and in the iPfam 
database (version 21.0).
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a smaller reduction in the error rate for a subset of protein
complexes from Ponstingl et al. 2003 from 16% for that
method to 13% for the method described here.

Another result of our work is the clustering of similar
interfaces. The enforced similarity guarantees that two
parts of the interface not only have similar biological
sequences, but also have similar spatial arrangements. The
groups are created for all contacts found in the PDB
(including those which were later classified as non-bio-
logical). The availability of interface clusters opens several
possibilities for further analysis. For example, it is possible
to check the literature for biological evidence of a particu-
lar interface by using sources related to all PDB complexes
containing it. This could greatly increase our confidence
in the annotation of the difficult cases, both on the level
of individual interfaces and on the level of complete com-
plexes. Further analysis of these interface groups and how
they co-occur in complexes may give insights into the evo-
lutionary history of protein complexes.

An analysis of the contribution of each interface property
to the accurate Random Forest prediction of protein-pro-
tein interfaces showed that the interface area, number of
intramolecular hydrogen bonds, evolutionary conserva-
tion, over-represented (and energetically favourable)
interface residues and residue-residue contacts, and inter-
face packing density contributed the most. An important
advantage of the Random Forest method over other
machine learning methods is that it can use all of these
diverse properties, without adjusting their relative nor-
malization, in order to make an accurate prediction.

The observed reduction of the error rate is both significant
and valuable for applications, but in our opinion it is also
surprising that it remains relatively high. In our study we
used a comprehensive set of interface characteristics, but
obviously more has to be done to understand what gov-
erns contacts under biological conditions. Several further
directions for study are possible. One of the most interest-
ing would be to combine our machine learning approach
with free energy calculations as suggested by the approach
used for the PISA database [14]. Another possible direc-
tion could involve algorithms to integrate information
from several interfaces together with "global" information
about complex. In our work we have used BIOMT stoichi-
ometry as such global information, but many problems
remains unresolved, in particular the relative weights
assigned to global and local components.

Finally, we found relatively little agreement on which
Pfam domains form contacts in protein complexes among
complexes predicted from our method and those in the
iPfam and 3DID databases. We attribute this discrepancy
mainly to crystal contacts and missing subunits in the

other databases due to ignoring symmetry-related chains.
It would be interesting to also compare the set of interact-
ing Pfam domains in the complexes identified by our
method with those predicted from yeast two-hybrid data
[42].
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Authors' contributions
AB conceived the prediction methodology and carried out
the calculations. Both authors participated in the analysis
of the results, database website design, and drafting the
manuscript. Both authors read and approved the final
manuscript.

Additional material

Acknowledgements
The BioEnergy Science Center is a U.S. Department of Energy Bioenergy 
Research Center supported by the Office of Biological and Environmental 
Research in the DOE Office of Science. The work was partially funded by 
ERKP558 "An integrated knowledge base for the Shewanella Federation" 
from the DOE Office of Biological and Environmental Research, and the 
Mayo Clinic. We wish to thank Jeff Holmes for the PInS website develop-
ment.

References
1. Jones S, Thornton JM: Principles of protein-protein interac-

tions.  Proc Natl Acad Sci U S A 1996, 93(1):13-20.
2. Sheinerman FB, Norel R, Honig B: Electrostatic aspects of pro-

tein-protein interactions.  Curr Opin Struct Biol 2000,
10(2):153-159.

3. Nooren IM, Thornton JM: Structural characterisation and func-
tional significance of transient protein-protein interactions.  J
Mol Biol 2003, 325(5):991-1018.

4. Bordner AJ, Abagyan R: Statistical analysis and prediction of
protein-protein interfaces.  Proteins 2005, 60(3):353-366.

5. Bordner AJ, Gorin AA: Protein docking using surface matching
and supervised machine learning.  Proteins 2007, 68(2):488-502.

6. Aloy P, Russell RB: Interrogating protein interaction networks
through structural biology.  Proc Natl Acad Sci U S A 2002,
99(9):5896-5901.

7. Lu L, Lu H, Skolnick J: MULTIPROSPECTOR: an algorithm for
the prediction of protein-protein interactions by multimeric
threading.  Proteins 2002, 49(3):350-364.

Additional file 1
Benchmark set of 435 protein complex structures with prediction 
results. The file is a tab-separated table with the following columns: PDB 
entry; correct oligomeric state; data source (P: Ponstingl et al. 2003, N: 
Nooren and Thornton 2003, or A: newly added structure); oligomeric 
state of the complex predicted by our method; oligomeric state of the com-
plex predicted by PQS; total number of subunits in the complex predicted 
by PISA; and oligomeric state of the PDB BIOMT complex.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-234-S1.tab]



Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2008, 9:234 http://www.biomedcentral.com/1471-2105/9/234

Page 11 of 11
(page number not for citation purposes)

8. Ponstingl H, Henrick K, Thornton JM: Discriminating between
homodimeric and monomeric proteins in the crystalline
state.  Proteins 2000, 41(1):47-57.

9. Valdar WS, Thornton JM: Conservation helps to identify biolog-
ically relevant crystal contacts.  J Mol Biol 2001, 313(2):399-416.

10. Bahadur RP, Chakrabarti P, Rodier F, Janin J: A dissection of spe-
cific and non-specific protein-protein interfaces.  J Mol Biol
2004, 336(4):943-955.

11. Ponstingl H, Kabir T, Thornton JM: Automatic inference of pro-
tein quaternary structure from crystals.  J Appl Cryst 2003,
36:1116-1122.

12. Henrick K, Thornton JM: PQS: a protein quaternary structure
file server.  Trends Biochem Sci 1998, 23(9):358-361.

13. PQS Protein Quaternary Structure server   [http://
pqs.ebi.ac.uk]

14. Krissinel E, Henrick K: Inference of macromolecular assemblies
from crystalline state.  J Mol Biol 2007, 372(3):774-797.

15. PISA (Protein Interfaces, Surfaces, and Assemblies) server
[http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html]

16. Davis FP, Sali A: PIBASE: a comprehensive database of struc-
turally defined protein interfaces.  Bioinformatics 2005,
21(9):1901-1907.

17. Kundrotas PJ, Alexov E: PROTCOM: searchable database of
protein complexes enhanced with domain-domain struc-
tures.  Nucleic Acids Res 2007, 35(Database issue):D575-9.

18. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA: 3D Complex:
A Structural Classification of Protein Complexes.  PLoS Com-
put Biol 2006, 2(11):e155.

19. Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A: PRISM:
protein interactions by structural matching.  Nucleic Acids Res
2005, 33(Web Server issue):W331-6.

20. Stein A, Russell RB, Aloy P: 3did: interacting protein domains of
known three-dimensional structure.  Nucleic Acids Res 2005,
33(Database issue):D413-7.

21. Jefferson ER, Walsh TP, Roberts TJ, Barton GJ: SNAPPI-DB: a
database and API of Structures, iNterfaces and Alignments
for Protein-Protein Interactions.  Nucleic Acids Res 2007/01/05
edition. 2007, 35(Database issue):D580-9.

22. Winter C, Henschel A, Kim WK, Schroeder M: SCOPPI: a struc-
tural classification of protein-protein interfaces.  Nucleic Acids
Res 2005/12/31 edition. 2006, 34(Database issue):D310-4.

23. Breiman L: Random forests.  Machine Learning 2001, 45(1):5-32.
24. Kabsch W, Sander C: Dictionary of protein secondary struc-

ture: pattern recognition of hydrogen-bonded and geometri-
cal features.  Biopolymers 1983, 22(12):2577-2637.

25. Abagyan R, Totrov M: ICM.  3.3th edition. La Jolla, CA , Molsoft LLC;
2007. 

26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25(17):3389-3402.

27. Li W, Godzik A: Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences.  Bioinfor-
matics 2006, 22(13):1658-1659.

28. Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput.  Nucleic Acids Res 2004,
32(5):1792-1797.

29. Lehmann EL: Nonparametric Statistical Methods Based on
Ranks.  New York , McGraw-Hill; 1975. 

30. Keskin O, Tsai CJ, Wolfson H, Nussinov R: A new, structurally
nonredundant, diverse data set of protein-protein interfaces
and its implications.  Protein Sci 2004, 13(4):1043-1055.

31. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S,
Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ,
Yeats C, Eddy SR: The Pfam protein families database.  Nucleic
Acids Res 2004, 32(Database issue):D138-41.

32. The Uniprot Consortium: The Universal Protein Resource
(UniProt).  Nucleic Acids Res 2007, 35:D193-197.

33. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular
Biology Open Software Suite.  Trends Genet 2000,
16(6):276-277.

34. DeLano WL: The PyMOL Molecular Graphics System.  Palo
Alto, CA, USA, DeLano Scientific; 2002. 

35. R Development Core Team: R: A language and environment for
statistical computing.  Vienna, Austria , R Foundation for Statistical
Computing; 2005. 

36. Liaw A, Wiener M: Classification and Regression by random-
Forest.  R news 2002, 2(3):18-22.

37. Janin J: Specific versus non-specific contacts in protein crys-
tals.  Nat Struct Biol 1997, 4(12):973-974.

38. Jones S, Thornton JM: Protein-protein interactions: a review of
protein dimer structures.  Progress in biophysics and molecular biol-
ogy 1995, 63(1):31-65.

39. Xu D, Tsai CJ, Nussinov R: Hydrogen bonds and salt bridges
across protein-protein interfaces.  Protein engineering 1997,
10(9):999-1012.

40. Fersht AR: Basis of biological specificity.  Trends Biochem Sci 1984,
9(4):145-147.

41. Finn RD, Marshall M, Bateman A: iPfam: visualization of protein-
protein interactions in the PDB at domain and amino acid
resolutions.  Bioinformatics 2005, 21(3):410-412.

42. Deng M, Mehta S, Sun F, Chen T: Inferring domain-domain inter-
actions from protein-protein interactions.  Genome research
2002, 12(10):1540-1548.


