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Partial least squares (PLS) is a widely used algorithm in the field of chemometrics. In calibration studies, a PLS
variant called orthogonal projection to latent structures (O‐PLS) has been shown to successfully reduce the number
of model components while maintaining good prediction accuracy, although no theoretical analysis exists
demonstrating its applicability in this context. Using a discrete formulation of the linear mixture model known as
Beer’s law, we explicitly analyze O‐PLS solution properties for calibration data. We find that, in the absence of noise
and for large n, O‐PLS solutions are simpler but just as accurate as PLS solutions for systems in which analyte and
background concentrations are uncorrelated. However, the same is not true for the most general chemometric data
in which correlations between the analyte and background concentrations are nonzero and pure profiles overlap.
On the contrary, forcing the removal of orthogonal components may actually degrade interpretability of the model.
This situation can also arise when the data are noisy and n is small, because O‐PLS may identify and model the noise
as orthogonal when it is statistically uncorrelated with the analytes. For the types of data arising from systems
biology studies, in which the number of response variables may be much greater than the number of observations,
we show that O‐PLS is unlikely to discover orthogonal variation whether or not it exists. In this case, O‐PLS and PLS
solutions are the same. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Partial least squares (PLS), sometimes referred to as projections to
latent structures, is one of the most commonly used multivariate
regression methods in chemometrics [1–3]. PLS is designed for
applications in which the data have more independent variables
than observations (the “small n, large p” regime) and where
collinearity is present among variables. In contrast to ordinary
least squares (OLS) regression, which is ill posed in the “small n,
large p” regime, PLS assumes that meaningful structure in the
data is low dimensional and attempts to identify as few linear
combinations of the independent variables (latent variables) as
possible without sacrificing prediction quality.

Nonetheless, interpretation of PLS components can be chal-
lenging in cases where significant systematic variation is present in
the measured data. Such variation can arise from a variety of
sources, including temperature fluctuations, instrument and
sample handling errors, and contamination of interfering sub-
stances. Even in well‐designed calibration studies, where the
response variables are carefully controlled to isolate corresponding
changes in the spectrum, systematic variation may still present
challenges in interpreting the PLS components and may adversely
affect prediction. Although one can often improve PLS prediction
accuracy by introducing more components to the model, doing so
has an adverse effect on model interpretability and can lead to
poorer prediction quality due to overfitting. For example, one
recent study used PLS for calibration and estimation of algal
lipid content from mid‐infrared (Mid‐IR) spectral data [4]. Despite
the small number of changing experimental factors, a relatively
large number of PLS components were needed to adequately

characterize the variation in the spectral data while preserving
accurate predictions of lipid concentration.
In 2002, Trygg and Wold [5] introduced a variant of PLS, called

O‐PLS, that was designed to remove systematic variation
uncorrelated with the response. The idea was that doing so
reduces the number of predictive components, thereby increasing
interpretability of the model factors. Indeed, in calibration settings,
O‐PLS models are known to have similar prediction quality to PLS
but often with far fewer, more meaningful components. For
nonlinear problems, the algorithm has been adapted for use with
the “kernel trick [6].” Another variant, O2‐PLS, works in much the
same way as O‐PLS but is applied bi‐directionally [7]. The data
blocks are treated as predictor and response in turn to identify
both X‐orthogonal variation in Y and Y‐orthogonal variation in X.
The O2‐PLS model is constructed by applying O‐PLS to the data in
both directions, and then building additional linear models
relating the X‐scores and Y‐scores.
The success of O‐PLS in spectroscopy has led to its use in

other fields. Recently, O2‐PLS was applied in a systems biology
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context to integrate metabolomic and transcriptomic data [8].
The same authors have also applied it to three‐way data to find
relationships among proteomic, transcriptomic, and metabolo-
mic profiles [9]. Unfortunately, these studies never compared the
O2‐PLS models with analogous PLS models for the same data.
To date, theoretical descriptions of O‐PLS solutions have

mostly focused on their relationship to PLS, without reference to
any underlying model describing the data. For instance, Kemsley
and Tapp [10] have suggested a simple method for filtering X
using only the PLS solution. This result is consistent with prior
observations by Ergon [11], who has also proposed projection‐
based techniques to reduce the number of PLS model
components [12]. Verron et al. [13] have also made interesting
observations regarding the connections between O‐PLS compo-
nents and their PLS counterparts. Our contribution, and the
central theme of this paper, entails an analysis of O‐PLS
applicability to chemometric and systems biology data, which,
to our knowledge, has not been made in the literature. We place
special emphasis on the qualitative properties of O‐PLS solutions,
often assuming that the data are noise free and that n is
large enough for tight covariance estimates to be valid. In doing
so, we explicitly outline solution properties while highlighting
some of the algorithm’s strengths and limitations. In particular,
following the approach set by Nadler and Coifman [14,15], we
begin by analyzing O‐PLS performance on spectral data obeying
Beer’s law and show explicitly why the algorithm often produces
informative results in this context. We extend this discussion to
the systems biology context in which one is likely to encounter
data matrices with very different properties than in calibration
studies and highlight the challenges this presents to the O‐PLS
algorithm.

1.1. Comparison of partial least squares and orthogonal
projection to latent structures

In order for the discussion to be reasonably self‐contained, we
provide a brief background on the mathematical formulation of
PLS and O‐PLS. Let X and Y be n× p and n×m matrices,
respectively, where p,m are the numbers of variables in each
data set and n is the number of observations. We assume that Y
is well approximated by

^
Y ¼ Xβ (1)

where β is the p×m matrix of regression coefficients. Although
both

^
Y and β are understood to be sample estimates, we use a

hat only on
^
Y to distinguish it from the data Y. No such

clarification is needed for the matrix β, which we always
understand to be an estimator. When n> p (i.e., the problem is
overdetermined) and X is of full rank, OLS solution, βOLS, is found
via the normal equations,

βOLS ¼ XTX
� �−1

XTY

When n< p (i.e., the problem is underdetermined), the matrix XTX is
guaranteed to be singular and no unique βOLS satisfies (1.1).
Partial least squares assumes that meaningful structure in the

data is inherently low dimensional, so that only a small subset of
the predictor variables is necessary to predict Y. These subsets
are traditionally called latent variables because they are, in
principle, unmeasurable by themselves [2]. A succinct form of
the PLS model is given by

X ¼ TPT þ E
^
Y ¼ TC

T

(2)

where the matrices T,P and C are of relatively low rank. By
analogy with principal components analysis (PCA), the columns
of matrix T are called the scores, those of P are the loadings (or
X‐loadings), those of C are the Y‐loadings, and E is the residual
matrix. The scores represent the coordinates of the observations
with respect to the loadings, W, of PCA(K), where K ¼ ð1 n= Þ YTX
is the sample covariance matrix for mean‐centered data. The
W‐loadings and Y‐loadings are then computed so that each
component is a best least squares fit. Eqn 1.2 is easily rearranged
to find that the PLS regression coefficient depends on both the
X‐loadings and Y‐loadings via

βPLS ¼ WCT (3)

O‐PLS may be thought of as PLS combined with a
preprocessing step that filters systematic variation from X that
is orthogonal, or statistically uncorrelated, to the Y variables. The
O‐PLS model has the form

X ¼ TWT þ TorthPT
orth þ E

^
Y ¼ TC

T

where the subscript (⋅)orth denotes orthogonal components and,
in general, T and C are not the same as those of PLS. The
regression matrix for O‐PLS, βO‐PLS, is found as in Eqn 1.3 but,
given the underlying dependence of C on the scores, will
generally differ from the PLS regression matrix. New predictions
are obtained in the standard way via Eqn 1.1 after first filtering
the new samples of orthogonal variation.

For reference, we summarize the steps of O‐PLS following
Trygg and Wold [7].

(1) Calculate A PCA components of the m× p covariance matrix

PCA Kð Þ ¼ PCA
1
n
Y
T
X

� �
¼ TPCAWT (4)

where TPCA is an m×A score matrix and W is a p× A loading
matrix with orthonormal columns. Recall that A≤m and that we
are primarily interested in cases where m<< p.1

(2) Calculate the n× A predictive score matrix T=XW. These are
coordinates of the rows of X with respect to the
orthonormal basis in W.

(3) Calculate the n× p residual matrix, Exy=X− TWT=X−XWWT.
This step subtracts away the projection of the rows of X onto
the basis in W.

(4) Calculate worth, the most significant loading of PCA(TTExy).
(5) Sequentially remove structured noise, torthpT

orth, from X:

t orth ¼ Xworth

pT
orth ¼ t

T
orthX=‖torth‖

2

X ← X−torthpT
orth

1In the event that m= 1, then A=1 and there is no need to perform PCA. This
is the case in the example in Section 2.4.

(1.1)

(1.2)

(1.3)

(1.4)
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(6) For additional orthogonal components, repeat steps 4 and 5.
Otherwise, repeat step 2 using the filtered X to update the
score matrix T, and go to step 7.

(7) Construct a PLS model from Y and the filtered X.
(8) To predict using a new sample, x(n+1), first filter any

orthogonal variation. Then ^y
nþ1ð Þ ¼ x nþ1ð ÞβO‐PLS.

The authors show that the algorithm maximizes the L2‐norm
of the projection of each torth onto T, thereby removing as much
structured noise from the Y‐predictive components as possible.
Specifically, torth satisfies the optimization criteria

max
t

‖TT t‖2subject to YT t ¼ 0: (5)

O‐PLS models often have fewer components than PLS for a
given accuracy. This is due to the removal of Y‐orthogonal
components, which, although potentially useless for prediction,
may still describe a large fraction of the total variation in X. In
this sense, we understand such O‐PLS solutions to be more
interpretable than the PLS ones: if fewer components are needed
for equivalent prediction quality, the corresponding latent
variables should be easier to interpret.

For a description of how O‐PLS relates to O2‐PLS, we refer the
reader to the original publication on the subject [7]. Because of
the symmetric nature of the O2‐PLS formulation (first X is the
predictor and Y the response, then vice versa) and to keep the
derivations tractable, we focus only on O‐PLS. We do so with
the understanding that all arguments also apply in reverse, with
X considered the response matrix and Y the predictor matrix.

2. ORTHOGONAL PROJECTION TO LATENT
STRUCTURES SOLUTION PROPERTIES FOR
DATA OBEYING BEER’S LAW

2.1. Beer’s law and calibration data

The original O‐PLS literature considered the application of the
algorithm to spectroscopic data [5]. In this section, we show
explicitly not only why O‐PLS results may be easier to interpret
than PLS results for Mid‐IR calibration data, but also how certain
undesirable solution features can arise depending on various
properties of the data. By imposing different restrictions on the
input data, we can analyze directly the strengths and limitations
of the algorithm.

The theoretical foundation for Mid‐IR calibration is Beer’s law,
which states that the spectral data are a linear mixture of the
pure constituent profiles weighted by their concentrations. In an
appropriately chosen system of units, the law may be written as
a sum of outer products of all constituent concentration and
pure profile vectors,

X ¼ ∑
s

i¼1
yiz

T
i (1)

Here,X is then× pmatrix of spectral data, s is the total number of
constituents in the sample, yi is an n‐vector of concentrations, and
zi is the p‐dimensional pure constituent profile (extinction
coefficients) of species i. It is most often the case in calibration
studies that only a relatively small number j of the s concentrations
are of interest, making it convenient to separate the expression in

Eqn 2.1 into two sums, the first corresponding to the analytes and
the second to the background constituents whose properties are,
in general, unknown. We assume the indices have been chosen so
that the first j components i=1,…, j are the analytes and the next
k= s− j components i= j+1, j+2,…, s are the background con-
stituents.We continue to use the symbols y and z to denote analyte
concentrations and spectral profiles but choose u and v to denote
the analogous background properties. Beer’s law may then be
expressed as

X ¼ ∑
j

i¼1
yiz

T
i þ ∑

k

i¼1
uivTi (2)

with s= j+ k. To simplify the notation one step further, wematricize
the summations in Eqn 2.2 to acquire

X ¼ YZT þ UVT (3)

where Y (n× j) and Z (p× j) contain the yif gji¼1 and the zif gji¼1 in
their columns, respectively, and similarly for U (n× k), V (p× k),
uif gki¼1, and vif gki¼1.
Some authors have used a probabilistic model of the input

data, where the measured concentrations are samples from a
potentially noisy underlying distribution [14,15]. Although we
recognize the theoretical value of a probabilistic approach, we
feel that most researchers actively using PLS and O‐PLS/O2‐PLS
will be more familiar with a discrete formulation. That said,
statistical estimates for finite training data may contain large
variance, especially when n is small. Because we are primarily
interested in the qualitative properties of O‐PLS solutions, we
will often assume that n is large enough for certain covariance
estimates (e.g., Cov(Y,U) = 0) to be valid. The only exception to
this is in Section 2.3, in which we examine how the algorithm
handles noisy data as a function of n and the noise strength.
In the following, we assume mean centering of the data

and denote the covariance of two matrices, A and B, by
Cov A;Bð Þ ¼ 1

nA
TB. With some abuse of notation, we define

analogous quantities between matrices and vectors, and vectors
and vectors. We also note that variance and covariance are related
in the usual way, so that for any vector a, Var(a) = Cov(a, a).

2.2. Uncorrelated concentrations and non‐overlapping
pure profiles

We first consider the simplest possible assumptions about data
obeyingBeer’s law (Eqn 2.3). We show that PLS andO‐PLS solutions
are identical, in particular because O‐PLS does not find Y‐
orthogonal variation. The assumptions are then relaxed to obtain
more general results. Unless otherwise stated, we take the data to
be noise free and n to be “large enough” to justify ignoring high‐
order terms in the covariance estimates (although we do briefly
describe how O‐PLS handles noise for small n in Section 2.3).
Suppose the system has the following properties:

Assumption 1: uncorrelated concentrations, Cov(Y,U) = 0

Assumption 2: non‐overlapping pure profiles, ZTV=0.

Physically, these assumptions imply that the analyte concen-
trations change completely independently of the background
across all samples, and that their pure profiles share no spectral
peaks with the background. Although this situation may be
unlikely in real experiments, it is a useful starting point for the
analysis because of its simplicity.

(2.2)

(1.5)

(2.3)

(2.1)
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First, we note that both PLS and O‐PLS covariance loadings,
W, are linear combinations of the pure analyte profiles. To see
this, recall that the first step of both algorithms computes the
XY‐covariance matrix, which, by Assumption 1, reduces to

K ¼ 1
n
YTX ¼ 1

n
YTYZT ¼ Cov Yð ÞZT (4)

From this, it follows that the columns of the p× A loading
weight matrix, W, of PCA(K) must be linear combinations of the
pure profiles and hence lie in the subspace Span{z1, z2,…, zj},
having dimension dj. Then, by Assumption 2, the background
pure profiles must be orthogonal to all of the loading weights,
VTW= 0.
Second, both PLS and O‐PLS find identical score matrices whose

columns are linear combinations of the analyte concentrations,

T ¼ XW ¼ YZTW ¼ YAT (5)

weighted by the spectral projection matrix AT=Z
TW. This is

desirable from a prediction standpoint because the background
constituents are assumed to be uncorrelated with the analytes.
Note thatwhen there is only one analyte ( j=1), Eqn 2.5 implies that
the first score is exactly proportional to the analyte concentration.
Under the given conditions, the first orthogonal component

of O‐PLS is zero. To see this directly, first compute the X‐residual,

Exy ¼ X−TWT ¼ YZT þ UVT
� �

−YZTWWT ¼ UVT

wherewe have used the fact that ZT=ZTWWT becauseW contains
a basis for the columns of Z. This and Assumption 1 yield the
result directly,

1
n
ETxyT ¼ V Cov U;Yð ÞAT ¼ 0 (6)

No Y‐orthogonal variation is found, and both PLS and O‐PLS
produce exactly the same predictive model. Omitting the simple
derivations for brevity, we note that for a single response under
these conditions, the O‐PLS solution has the following properties:

t∝y; p; βO‐PLS∝z; worth ¼ 0

2.3. Relation to Gaussian noise

We note that when n is small, the covariance estimate in
Assumptions 1 and 2 will be O 1=

ffiffiffi
n

p Þð . A careful look at the steps
of the algorithm reveals that this leads to correction terms of
O 1=

ffiffiffi
n

p Þð in Eqn 2.6. Any implementation of O‐PLS will have an
orthogonality tolerance to determine whether the matrix in Eqn
2.6 contains significant components. So long as the error in the
covariance estimate stays below this tolerance, the results of the
previous paragraphs remain unchanged.
Regarding the algorithm’s handling of noise, the authors of

O‐PLS claim that “results from initial studies with O‐PLS do not
show any degradation of results compared to non‐treated data”
[5]. Indeed, in the limit of large n when the covariance estimates
are precise, noise is uncorrelated with the analyte concentrations
and O‐PLS classifies it as the residual. For small n, however, it is
possible that O‐PLS will identify noise as being orthogonal to Y.
We make these statements more precise and illustrate with a

simple example. Suppose that the data are modeled by Beer’s
law (Eqn 2.3) with noise,

X ¼ YZT þ UVT þ σξ

where σ is a non‐negative parameter characterizing noise
strength and ξ is a matrix whose elements are independent
identically distributed samples fromN 0; 1ð Þ. For large enough n,
Assumptions 1 and 2 remain valid, and the given results still
hold. In particular, no orthogonal variation is identified by O‐PLS,
and the O‐PLS and PLS models are the same.

For small n, however, we must instead assume that
Cov Y; ξð Þ ¼ O 1=

ffiffiffi
n

p Þð . Although a detailed analysis of the solution
properties’ dependence on σ, n, and p is beyond the scope of this
paper, we can demonstrate that the following properties are true
for a single‐component system with Gaussian noise:

(1) max |worth| =O(σ2/n). This quantity is directly related to the
tolerance used by O‐PLS to identify orthogonal variation.

(2) Filtering of noise by O‐PLS can lead to lower residuals, but at
the cost of overfitting.

We omit a detailed proof of these statements and instead
present a numerical example to support the claims.

Figure 1 shows O‐PLS solution properties for a single‐
component system with noise. The noise parameter σ is allowed
to vary from 0 to 0.04, where σ= 0 corresponds to a perfectly
clean signal and σ= 0.04 to a highly corrupted one (left panel).
The center panel provides numerical evidence for the claim that
max |worth| =O(σ2/n). Note that on a log–log scale and for all fixed
n, the dependence ofmax |worth| on sigma is approximately linear
with slope 2 (it is quadratic in σ). On the other hand, for all fixed σ,
the spacing between the lines is approximately constant. Because
n= 2l for l= 1,…, 6, this fact implies that max |worth| is also
proportional to 1/n.

Recall that magnitude of worth determines whether O‐PLS
identifies orthogonal variation (step 4 of the O‐PLS pseudocode).
Hence, as this quantity increases, we would expect O‐PLS to
identify more orthogonal components. This is illustrated in the
right panel of Figure 1, which shows the average number of
orthogonal components identified as a function of σ for n=64. In
region A, corresponding to small σ, no orthogonal variation is
found. In region B, either zero or one orthogonal component is
identified, depending on the specific instance of the noise. As σ
increases further (region C), O‐PLS consistently identifies one
orthogonal component, and so on for regions D and E. Although
not shown for clarity, similar trends are apparent for other values
of n, with the cutoff for each region shifted further to the left
(smaller σ) for smaller n. Although the residual for O‐PLS decreases
as the number of orthogonal components increases, this may be
viewed as overfitting because the algorithm is building a model of
the noise that will be used to filter future samples.

2.4. Uncorrelated concentrations and overlapping pure
profiles

The assumption of uncorrelated concentrations may be valid in
calibration experiments where the known constituents are added
directly to an otherwise homogeneous sample set (i.e., in “spike‐in”
calibration studies [4]). Although the concentrations of the analytes
vary, those of the unknown background constituents should
remain roughly the same from sample to sample, resulting in zero
or near‐zero sample correlations between analyte and background
concentrations. On the other hand, the second assumption of non‐
overlapping pure profiles is often invalid because the spectra of
many constituents share peaks.

(2.4)

(2.5)

(2.6)
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Therefore, we next examine PLS and O‐PLS models under only
Assumption 1 (Cov(Y,U) = 0), allowing for the possibility of
spectral overlap (ZTV≠ 0). We find that O‐PLS interpretability
(corresponding to a smaller number of components) is more
robust against increases in spectral overlap and concentration
covariance than PLS. In particular, we will show that O‐PLS
solution components have the following properties:

(1) wT
orthZ ¼ 0, that is, the orthogonal loading is orthogonal to

the pure profiles.
(2) torth is a linear combination of the background concentra-

tions, uf gki¼1.
(3) removing the orthogonal component, portht

T
orth, removes

only some linear combination of the background profiles.

Furthermore, for a single‐response system, we derive the
following properties:

t 1∝y;p ¼ z; βO‐PLS ¼ ž=‖z‖

torth ¼ u;porth ¼ v;X1 ¼ yzT

where the inverted hat �̌ denotes a unit vector.
To motivate the discussion, we first present simple numerical

results for a three‐component system in Figure 2. The system has
one analyte and two background constituents with concentra-
tions y, u1, and u2 and spectral profiles z, v1, and v2, respectively.
Each column of the figure highlights qualitative properties of PLS
and O‐PLS solutions for a different degree of overlap of the pure
profiles (overlap increases from left to right), on the assumption
that all concentrations are uncorrelated (not shown). In this
example, the single O‐PLS component has a score vector collinear
with y and a loading proportional to the pure profile. PLS, on the
other hand, produces a three‐component model with the same
prediction accuracy as O‐PLS, but whose loadings are more
difficult to interpret. We outline the reasons for this below,
occasionally referring to the figure to illustrate the key points.

The covariance matrix and its PCA loadings are the same as
before for both PLS and O‐PLS (2.4). However, the PLS score
matrix is given by

T ¼ XW ¼ YBT þ UCT (7)

where we have defined BT=ZTW and CT=VTW. Written in this
way, Eqn 2.7 emphasizes how the PLS scores may contain
contributions from potentially Y‐orthogonal background con-
stituents. The extent to which this happens in general depends
on the following:

• The variances of analyte and background concentrations.
Because the variance of each individual concentration vector
is proportional to its norm, columns of Y and U in Eqn 2.7
that have large variances will significantly affect the
geometric direction and magnitude of the columns of T.

• The parameter aT≡ ‖CT‖/(‖CT‖+ ‖BT‖), which we call the profile
overlap ratio because it characterizes the extent to which the
pure profiles of background constituents overlap with those
of the calibration ones. Note that the ratio is zero when
the background profiles are all orthogonal to the loading
weights, W, and approaches 1 as the background profiles lie
increasingly in the subspace spanned by the basis in W.

If either Var(U) or the overlap ratio is close to zero, the second
term in Eqn 2.7 will not drastically contribute to the scores. In any
other case, however, the second term may be non‐negligible.
Unfortunately, because the PLS scorematrix contains contributions
from U, which is assumed to be orthogonal to Y, the prediction
accuracy of individual components is necessarily degraded. This
type of variation, although not caused by measurement or
sampling error, is noise with respect to prediction of the analytes
and is exactly the type of variation O‐PLS aims to characterize and
remove (cf. third row of Figure 2).
Concentration covariance and spectral overlap also affect PLS

loadings given by

PT ¼ TTT
� �−1

TTX (8)

Although a closed‐form expression for the inverse, (TTT)− 1 is
intractable, we can rewrite the product TTX as

TTX ¼ BT
TY

TYZT þ CT
TU

TUVT ¼ BPZT þ CPVT

Figure 1. O‐PLS model dependence on noise strength σ and sample size n for a simple system. The spectral data are of the form X ¼ yzT þ σΞ, where
y is mean centered and of unit variance and z is the pure profile with max z ¼ 2. The noise is composed of a scalar σ and matrix ξ whose columns are
random samples from a Gaussian distribution with mean zero and unit variance. Left: Dependence of sample spectra on noise parameter σ. Center: The
max norm of worth is of order O(σ2/n). The norm of this vectors determines whether or not O‐PLS identifies orthogonal components. Right: PLS and O‐
PLS log10 RMSEP as a function of σ over 50 trials for n=64. Below the O‐PLS threshold for worth (interval A), no orthogonal components are found, and
O‐PLS prediction is equivalent to PLS. As the magnitude of worth increases, O‐PLS identifies one (interval C) and then two (interval E) orthogonal
components. Intervals B and D are transition regions where the average number of orthogonal components falls between the adjacent values. Similar
trends are apparent for other values of n, with the main difference being that the cutoff is shifted towards smaller σ for smaller n. Because the system
has only a single non‐noisy component, intervals B–E correspond to overfitting.

(2.7)

(2.8)
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Figure 2. Partial least squares and O‐PLS y‐predictive models for three‐component systems with varying degrees of overlap of the pure profiles,
characterized by the profile overlap ratio, aT, which increases from left to right. Analyte concentrations are assumed to be uncorrelated with the
background concentrations. First row: Pure constituent profiles with various degrees of overlap. Second row: Three representative spectra. Third row:
The first PLS and O‐PLS scores (normalized for ease of visualization) are plotted against y for each value of aT. Fourth row: Interpretability of PLS
loadings is not straightforward (dashed lines) and changes significantly with aT, whereas the single O‐PLS loading remains proportional to the pure
profile z independent of degree of overlap.
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The A × j and A × k matrices BP ¼ nBT
T Cov Yð Þ and CP=

nCT
T Cov Uð Þ are defined to simplify the expression. Written in this

way, it is clear that the loadings depend on both Z and V. Hence,
like the scores, PLS loadings may contain contributions from the
unknown constituents, the strength of which depends in a
complex way on spectral overlap and auto‐covariance of the
calibration and background constituent groups (cf. fourth row of
Figure 2). Contrast this with the loadings described in Section 2.2
that depend only on the analyte profiles, Z.

Next, we show that O‐PLS scores and loadings differ signif-
icantly from their PLS counterparts, resulting in fewer predictive
components and better interpretability of the loadings. First,
note that O‐PLS will initially compute the same scores as
PLS, T=YBT+UCT. It is straightforward to show that worth is
orthogonal to all of the pure profiles, wT

orthZ ¼ 0. Hence, up to
normalization, the first orthogonal score vector has the form

torth ¼ Xworth ¼ UVTworth (9)

The columns of torth are linear combinations of the uif gki¼1
only, meaning that each orthogonal component corresponds
only to variation from the background. This is desirable because,
by assumption, the background is uncorrelated with Y and
should not contribute to the prediction model. In Figure 2, the
single O‐PLS predictive score is compared with the first PLS
score in the third row. One can infer from these plots that the
two orthogonal scores removed by O‐PLS are some linear
combination of the background concentrations because the only
remaining score is perfectly collinear with y.

Analysis of the O‐PLS loadings is not as simple as for PLS
because they are computed after iteratively filtering X. However,
it is useful to examine the orthogonal loadings that, up to
normalization, have the form

pT
orth ¼ tTorthX ¼ nwT

orthV Cov Uð ÞVT (10)

Clearly, each orthogonal component, torthpT
orth, subtracts some

linear combination of the pure background profiles from X.
Again, the degree to which this happens depends in a complex
way on the auto‐covariance of the background concentrations
and the degree of pure profile overlap. For our simple example,
the O‐PLS loading contains no contribution from the back-
ground profiles (Figure 2).

Closed‐form analysis of O‐PLS solutions for the most general
case is beyond the scope of this paper. For simple systems with
only a single response, however, it is easy to verify that O‐PLS
solutions have the mentioned properties.

For example, consider a two‐component system,

X ¼ yzT þ uvT

corresponding to Eqn 2.3 with j= k= 1, in which concentrations
are uncorrelated (Cov(y,u) = 0) and the pure profiles overlap
(zTv≠ 0). We omit the explicit calculation of the PLS loadings,
simply noting that they are some linear combinations of both z
and v (cf. Figure 2). In relatively few lines, we can show that O‐
PLS exactly separates the analyte from the background.

We first note that the first normalized loading weight is
proportional to the pure analyte profile, w1 = z/‖z‖. This follows
from the fact that the covariance vector,

k ¼ 1
n
yT yzT þ uvT
� � ¼ Var yð ÞzT

analogous to K in Eqn 1.4, is collinear with z and proportional to
w1 by construction. The initial score contains a u‐component,

t1 ¼ Xw1 ¼ yzT þ uvT
� �

z=‖z‖ ¼ αyþ βu

where, for convenience, we define α= ‖z‖ and β ¼ zTv
‖z‖. O‐PLS

next computes the residual,

E xy ¼ X−t1wT
1

¼ yzT þ uv
T
− αyþ βuð Þz

T

α
¼ u vT−

β
α
zT

� �

and orthogonal loadings weight,

w̃T
orth ¼ t

T
1Exy ¼ αyþ βuð ÞTu vT−

β
α
zT

� �

¼ nβ Var uð Þ vT−
β
α
zT

� �

where the tilde simply indicates that the vector is not yet
normalized. Note that ˜worth is proportional to the z‐orthogonal
projection of v because

v−
β
α
z ¼ v −

vTz
‖z‖2

z ¼ v− vTž
� �

ž

where ž is the unit vector in the direction of z.
Now let worth¼w̃orth=‖w̃orth‖, where ‖w̃orth‖¼nβ Var uð Þð‖v‖2−

vTž2Þ: The fact that worth is orthogonal to z implies that the
orthogonal score reduces to exactly u via

torth ¼ Xworth ¼ u
nβ Var uð Þ ‖v‖2−vTž2

� �
w̃orth

¼ u

This leads to the first and only orthogonal loading being
exactly equal to the background profile by

pT
orth ¼ tTorthX=‖torth‖

2 ¼ uT uvT=‖u‖2 ¼ vT

It follows immediately that the background component is
removed because torthpT

orth ¼ uvT and that the filtered data are
exactly equal to the y‐component, X1 ¼ yzT . O‐PLS recomputes
the first score,

t1 ¼ X1w1 ¼ yzTz
‖z‖

¼ ‖z‖y

with corresponding (scalar) y‐loading,

c1 ¼ tT1y
‖t21‖

¼ ‖z‖yTy
—
‖z‖2y

T
y
¼ 1

‖z‖

and regression vector,

βO‐PLS ¼ c1w1 ¼ z
‖z‖2

¼ ž
‖z‖

which is also proportional to the loading p. Although not
derived here, we note that PLS also arrives at the same
regression coefficient.
In summary, O‐PLS filters exactly the u‐component of the

data, resulting in an easily interpreted, single‐component model.
Although PLS arrives at the same regression coefficient, each of
the three scores and loadings depend significantly on the

(2.9)

(2.10)
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degree of overlap of the pure profiles. This example contains
only two constituents for simplicity, but analogous results hold
for the example in Figure 2 and should generalize easily to more
complex systems.

2.4.1. Relation to baseline drift

A common type of Y‐orthogonal measurement error is baseline
drift, whereby the mean of the sample spectra appears to vary
for each sample [5]. We discuss in Section 3 how it is, in fact,
possible for O‐PLS not to filter this type of variation for certain
types of data matrices, although the conditions under which
this can happen are not likely to be found in calibration data.
We ignore this possibility for the time being and show
explicitly, for calibration data at least, why O‐PLS identifies the
drift as Y‐orthogonal.
A useful way to think of baseline drift is as noise

uncorrelated with the calibration concentrations but whose
loading is a nonzero constant. As such, the noise “pure profile”
may be thought of as overlapping with the constituent pure
profiles and identified as Y‐orthogonal. To see this in a simple
case, replace the background component in the previous
example with a “one” of the form σξT, where σ is a normally
distributed n‐vector with mean zero and unit variance
(uncorrelated with y) and ξ= ξ1 is a constant “baseline” vector,
equal to a scalar, ξ, times the one‐vector, 1. Thus the drift plays
the role of the background in the example and is shown to be
filtered accordingly.

2.5. Partial least squares prediction optimality for noise‐
free data and relation to orthogonal projection to latent
structures

In this section, we provide justification for the observation that,
in practice, O‐PLS prediction is very similar to that of PLS. This
means that, under the conditions in Section 2.4, O‐PLS may have
fewer components although being just as predictive as PLS. We
begin by citing a relevant result about PLS prediction optimality
by Nadler and Coifman [14]. We then show that PLS regression
in the sense of Eqn 1.1 is identical whether one uses X or a
filtered X, provided that the filtering is performed in a certain
way. In particular, PLS prediction does not depend on the
component of z that is orthogonal to the net analyte signal
(NAS) vector. This suggests a mechanism by which O‐PLS filters
the data without impairing prediction.
Following the analysis by Nadler and Coifman [14], consider a

single‐response, noise‐free system obeying Beer’s law (Eqn 2.3
with j = 1 and k ≥ 1). We assume that the (k + 1) × (k + 1)
covariance matrix of y;u1;…;ukf g is of full rank and that
z∉Span v1; v2;…; vkf g. The analysis also depends on the notion
of a NAS vector of the response, y, which is commonly defined
as the component of the analyte profile that is orthogonal to the
background profiles [16,17],

zNAS yð Þ ¼ z−∑
i¼1

dk

zT ⌣v i
� �

⌣v i

Here, the set ⌣v if gdki¼1 is an orthonormal basis for
Span v1; v2;…; vkf g. Note that, by construction, the NAS is
orthogonal to all of the background profiles,

zTNASV ¼ 0 (11)

Nadler and Coifman show that, for an infinite training set with
no noise, the following two results hold:

(1) the root mean square error of prediction (RMSEP) of a PLS
model with at most k+ 1 components is zero, and

(2) the corresponding regression vector βPLS is equal to a
constant b times the NAS vector, that is, βPLS ¼ bzNAS.

Combining these two results, we find

^y ¼ XβPLS ¼ yzT þ UVT
� �

βPLS ¼ yzTβPLS (12)

by Eqn 2.11 and result 2. This shows that exact prediction does
not depend on the k background constituents. Under the stated
conditions, any filtering procedure that does not alter the y‐
component of the data does not influence prediction optimality
of PLS regression.

In fact, letting z⊥NAS ¼ z−zNAS, we continue the derivation in
Eqn 2.12 to find

X βPLS ¼ y zNAS þ z⊥NAS
� �TβPLS ¼ yzTNAS

� �
βPLS

From this, we conclude that any algorithm filtering X of its
NAS‐orthogonal components will not affect prediction optimal-
ity under the given conditions.

These observations do not make reference to an explicit O‐
PLS model for the most general case of correlated concentra-
tions and overlapping pure profiles, but they do suggest an
explanation for the similarity of PLS and O‐PLS predictions. As
long as filtering preserves the y‐component completely, or the
NAS‐collinear part of y, regression on the filtered data yields
identical prediction. And this “prediction agnostic” filtering is
exactly the type that O‐PLS is expected to perform. The question
of how exactly O‐PLS predictions are affected by the presence of
noise for finite training data remains open. Nadler and Coifman
[15] derive several interesting PLS results for noisy, finite training
data that presumably could be extended to O‐PLS.

2.6. General calibration

For the most general calibration data, it may not be appro-
priate to assume that analyte and background concentra-
tions are uncorrelated. Here, we remove that assumption
( Cov Y;Uð Þ≠0) and place no constraints on the pure profile
relationships (ZTV≠ 0). We demonstrate that filtering the
variation can adversely affect interpretability of the resulting
model. Furthermore, we show that it is likely in this case that no
Y‐orthogonal variation exists at all, although, intuitively, one
might expect it to exist.

A simple example is sufficient to illustrate how filtering of
Y‐orthogonal variation in the most general case can adversely
affect interpretation of the O‐PLS model. Consider a three‐
component system with one analyte characterized by concen-
tration y and pure profile z, and two background constituents
characterized by concentrations u1, u2 and spectral profiles v1,
v2 (Figure 3). We assume that y is correlated with u1 but not
with u2 and that u1 and u2 are only partially correlated. In
addition, all three pure profiles overlap in the middle region of
the spectrum, corresponding to the case aT=0.316 in Figure 2.
Intuitively, one might expect it to be beneficial to remove one
orthogonal component because u2 is uncorrelated with y.
Indeed, the removal of one orthogonal component results in a two‐
component model, where each score is more collinear with y than(2.11)

(2.12)
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any of the three PLS scores. One can see in the figure that the
orthogonal loading positively weights the background peaks.
However, removing this component degrades the interpretation of
the model because the peaks of v1 are positively weighted in the
regression vector. In contrast, the PLS regression vector shows
positive weights for peaks in the analyte profile, z, and negative
weights for the background peaks.

Intuitively, the reason for poor interpretability of the
regression coefficient is that O‐PLS removes the y‐orthogonal
component of both background peaks simultaneously, whereas
only one of the background components is truly uncorrelated
with the analyte. We find by inspection that the orthogonal
loading porth is approximately equal to the first loading of the
truly y‐orthogonal component of X, denoted X⊥,

X⊥ ≈ u⊥
1 v

T
1 þ u⊥

2 v
T
2

where u⊥
1 and u⊥

2 are the y‐orthogonal components of u1 and u2.
Hence, the filtered data are approximately equal to

X1≈X−X⊥ ¼ y zT þ γvT1
� �

where γ ¼ Cov u1;y
� �

Var yð Þ . It is as if the system now contains just the

analyte, but with a modified profile, zT þ γvT1 . This is apparent in

the figure, where one can see that the regression coefficient has
significant contributions from v1 and essentially no interference
from v2. Although it is true that the peaks related to y and u1

covary in the spectral data on account of correlated concentra-
tions, they are not generally useful in predicting y.
Under the mentioned conditions, it is also possible that no

identifiable Y‐orthogonal variation exists. Consider the general
covariance matrix for both PLS and O‐PLS,

K ¼ 1
n

YTYZT þ YTUVT
� �

¼ Cov Yð ÞZT þ Cov Y;Uð ÞVT

(13)

Recall that, by Eqn 1.4, the loading weights, W, are the PCA
loadings of K. From Eqn 2.13, it is clear that these loading weights
have contributions from the background constituent profiles, the
significance of which depends directly on the analyte–background
covariance. If K is of full rank, say with rank rk, and the subspace
spanned by the pure profiles (both calibration and background) is
of dimension less than or equal to rk, then W will contain an
orthonormal basis for the row space ofX. It follows that Exy ¼ 0 and
O‐PLS will find no orthogonal components. We explicitly outline
properties of the data matrices that can lead to this situation in
Section 3.1.

Figure 3. Comparison of PLS and O‐PLS solution properties for system with overlapping pure profiles and concentrations (not shown) satisfying Cov
(y, u1) = 0.45, Cov(y, u2) = 0, and Cov(u1, u2) = 0.04. Note that u2 is totally uncorrelated with y and has low correlation with u2, but its pure spectrum
overlaps with both. Top left: Pure analyte profile (z) and background pure profiles (v1 and v2). Top right: First O‐PLS orthogonal loading. Bottom left:
Comparison of fit for first O‐PLS and PLS components. Bottom right: Comparison of O‐PLS and PLS regression coefficients. Despite the orthogonality of
u2 and y, removal of one orthogonal component leads to a misleading regression coefficient that positively weights the peaks of v1, which, in general,
are not useful for predicting y.

(2.13)
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3. ORTHOGONAL PROJECTION TO LATENT
STRUCTURES FOR SYSTEMS BIOLOGY

3.1. Y‐orthogonal variation may not exist

So far we have considered the performance of O‐PLS on
calibration data modeled by Beer’s law. The benefit of having
such a model is that it allows explicit analysis of solution
properties and prediction capability. Although O‐PLS interpret-
ability can suffer when analyte and background concentrations
are highly correlated, the mentioned analysis shows that it is
otherwise quite effective at reducing the required number of
predictive components.
Perhaps not surprisingly, in light of the success of O‐PLS in

chemometrics applications, recent attempts have been made to
apply O‐PLS to large two‐block data sets in the context of
systems biology. For large matrices, however, the data may not
contain the type of orthogonal variation that the algorithm is
designed to filter. We outline some fairly broad conditions that
lead to this situation. By broad, we mean conditions that may be
commonly encountered when the number of variables in X and
Y is large relative to the number of samples, as might be the
case in studies involving microarray or metabolomic data with
anywhere from hundreds to tens of thousands of variables.
Barring successful filtering of structured Y‐orthogonal variation,
the model produced by O‐PLS is identical to a PLS model of the
original data. We note that, in contrast to the previous section,
the analysis of this section does not depend on assumptions of
large n or the absence of noise.
Before presenting technical details, we take a general view

of how O‐PLS may encounter problems when both data matrices
have a large number of variables. Suppose both X and Y contain
far more variables than observations (m, p>> n). The purpose of
both PLS and O‐PLS is to find linear combinations of the
independentX‐variables that simultaneously describe variation in
X and are significant for the prediction of Y. Recall that O‐PLS
filters portions of the scores that are orthogonal to the columns of
Y, whereas PLS scores may have Y‐orthogonal components.
However, when Y is large enough and enough of the response
variables are linearly independent, the subspace orthogonal
to the columns of Y is empty. In other words, because each
column of Y is a vector in the vector space Rn spanned by an n‐
dimensional basis set, if enough of the columns are linearly
independent, then all n of those basis vectors will be needed to
construct the best possible predictive scores, leaving no basis
vectors to describe a possibly Y‐orthogonal subspace. This can
lead to situations where, intuitively, orthogonal variation exists
but the algorithm is unable to characterize it.

3.1.1. Conditions on X and Y

We now describe the technical properties of X and Y that can lead
to a situation in which O‐PLS is unable to identify Y‐orthogonal
variation. A less general form of the conditions is presented first,
both because it is easier to understand and because it is likely to
occur in real data. For simplicity, we assume that the mean‐
centered data are of full rank, although all of the arguments may
be easily modified in the event that mean centering reduces the
matrix ranks by one. Proofs are available in the Appendix.

Theorem

(a) Let X∈Rn�p and Y∈Rn�m be two data matrices containing n
samples of p independent and m response variables, respectively.

If m,p≥n, and that rank(X) = rank(Y) = n with all n components
of PCA(KÞ considered significant for O‐PLS, then Exy ¼ 0 and O‐
PLS fails to find Y‐orthogonal variation.

A more general statement is the following.

Theorem

(b) If colspace Xð Þ⊆colspace Yð Þ and rx ¼ rank Xð Þ components of
PCA(K) are considered significant, then Exy ¼ 0 and O‐PLS fails
to find Y‐orthogonal variation.

We note that matrices satisfying the conditions in (a)
automatically satisfy those in (b), so (a) is technically a corollary
of (b). To see this, suppose the conditions in (a) are satisfied. Then
colspace(X) = colspace(Y) = Rn because both matrices are of full
rank and rx= n components of PCA(K) are considered significant.

An important question for the application of O‐PLS is how often
can one expect to encounter the given conditions in real data. In
calibration studies with a relatively small number of analytes, it is
unlikely that onewill encounter either set of conditions. In particular,
withm<n≤p, O‐PLS can potentially find orthogonal variation. The
conditions in (a) are impossible by default because rank Yð Þ < n.
And in order for the conditions in (b) to be true, the spectra would
have to be extremely simple, with all relevant X‐variables being
described by linear combinations of the measured concentrations.
Except for the simplest data, this is unlikely to happen.

The situation is quite different, however, when the number of
response variables is greater than the number of samples, which
is especially true if one is trying to correlate, for example,
transcriptomic data with metabolomic data [9]. In this case, both
matrices will almost certainly be of maximal rank n. The question
then becomes whether or not the covariance matrix K will also be
of rank n. Heuristically, this can happenwhen n ormore significant
factors change independently across the samples. Under these
conditions, O‐PLS may be unable to identify systematic variation.

In some sense, looking for orthogonal variation when the
feature space is exceptionally large appears to be fundamentally
inappropriate. If, instead, we start with the assumption that a
relatively small number of factors are cross‐correlated in an
interesting way, we open the door for a host of other successful
approaches. For example, one may try to enforce sparsity of the
regression coefficients using a shrinkage-selection algorithm
[18] or, as in canonical correlation analysis, attempt to identify
linear combinations of the features in X and Y simultaneously
that best describe the correlations between them [19].

3.2. A simple example

We illustrate with an example in which there is no Y‐orthogonal
variation in X, yet there are aspects of X that one’s intuition says
should be filtered. Imagine a study in which five strains of a
microorganism each has a unique genetic signature, resulting in
a compound that is apparent in its Mid‐IR spectrum. The aim of
the study is to try to uncover information about both the genetic
pathways involved and the corresponding changes in cell
chemistry. Now suppose the data show that exactly one distinct
gene in the microarray is expressed and that the expression is
highly correlated with one distinct peak in the Mid‐IR spectrum
(Figure 4). If we assume mean centering of the data, then X, Y,
and the covariance matrix K are of maximal rank n. Because each
gene is independent of (and hence uncorrelated with) the
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others and has significant correlations with one peak in the
spectrum, one cannot discard loadings of K without discarding
essential information about the quantities of interest. As a result,
a full n‐component model is needed.

Now suppose the samples in this experiment have been
contaminated, with the result that a spurious peak appears in
the spectral measurements. Although we may intuitively expect
this peak to be uncorrelated with gene expression, the given
statements about the rank of X, Y, and K are still valid. Hence,
the conditions in Theorem (a) are met and O‐PLS will not filter
the variation. In this case, PLS and O‐PLS models are identical
and contain significant contributions from the spurious peak.

One way to circumvent the inability of O‐PLS to identify
Y‐orthogonal variation is to increase the number of observations.
Geometrically, the five genes plus the systematic variation in our
small example are six independent factors that the algorithm is
attempting to describe by scores in a five‐dimensional subspace.
Increasing the sample size, then, not only results in more accurate
sample estimates to covariance (collinearity) and orthogonality
(uncorrelatedness) between the variables, but also increases the
dimensionality of the vector subspace used to describe true
variation in the data. Indeed, if two observations of each
experimental state are taken instead of one, O‐PLS coefficients
are seen to correspond nicely with the correct spectral peaks, and
the orthogonal loading (not shown) corresponds directly to the
spurious peak.

Another way to avoid this issue is to force O‐PLS to identify Y‐
orthogonal variation by building a separate model for each of the
genes. In the example, for instance, this leads to the spurious peak
being identified as orthogonal to each yif gji¼1. Unfortunately, one

is left withm separate models of the same variance in X, as well as
up to m independent sets of latent variables. If the type of
orthogonal variation is known a priori, one could try to use O‐PLS
in a somewhat surgical way via categorical response variables
designed to target specific system variation [20]. This approach is
not general, however, because it depends on a fairly specific
knowledge of the confounding effects in the system.

4. CONCLUSION

For spectral data obeying Beer’s law in the noise‐free, large n
setting, O‐PLS often generates regression models that are as
good at prediction as PLS, but with far fewer components. The
extent to which O‐PLS separates analyte and background
constituents depends primarily on the covariance structure
between the two groups. At its best, when the concentrations of
interest are uncorrelated with the background, O‐PLS loadings
and regression coefficients are linear combinations of the pure
profiles. Otherwise, although prediction scores remain collinear
with the calibration concentrations, interpretability of loadings
and regression coefficients is degraded because they contain
contributions from the background profiles. The extent of the
degradation depends in a complex way on concentration
covariance and spectral interference of the pure profiles.
For noise‐free and error‐free data, PLS prediction is known to be

optimal with respect to RMSEP. However, components of X
uncorrelated with the calibration concentrations or, more gener-
ally, those whose loadings are orthogonal to the NAS vector do not
affect the optimality of PLS prediction. Because O‐PLS explicitly
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Figure 4. An illustration of how O‐PLS ability to filter orthogonal variation depends on properties of the data matrices. Top panel: Data consisting of
only n=5 samples of gene expression Y (left) are assumed to have a spurious peak on the right side of the measured spectra X (center) that is truly
uncorrelated with gene expression. The microarray heat maps show gene expression, increasing in value from black to white. Each gene has a distinct
signature, as indicated by the corresponding letters on the x‐axis. Solid lines show the true spectra, whereas dashed lines indicate systematic variation
that is uncorrelated with Y. O‐PLS does not identify orthogonal variation, and the regression coefficients β (right) are adversely affected by the
systematic variation. Bottom panel: If each measurement is carried out twice, the orthogonality of the spurious peak becomes more apparent (left). O‐
PLS can then identify and filter the spectral data (center) such that the orthogonal variation is removed (right).
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filters scores that are Y‐orthogonal, this suggests a reason for the
similarity of prediction between the two algorithms.
Despite the success of the algorithm in the context of calibration

studies, caution is needed when applying O‐PLS to data sets with
large feature spaces (for which both p,m≥n), a situation that may be
commonly encountered in the context of systems biology. In this
scenario, it is likely that O‐PLS will be unable to identify Y‐orthogonal
variation as defined by the algorithm. The issue may be remedied by
increasing the number of samples. Although doing so in chemo-
metrics may be relatively quick and inexpensive, the same cannot be
said for certain types of experiments in systems biology (e.g.,
microarray) inwhich thenumber of observationsmaybeunavoidably
small. If prediction is the aim, identification of Y‐orthogonal variation
maynot be crucial, although the lack of theoreticalmodels todescribe
the data makes evaluation of prediction quality completely
dependent on data‐driven methods.
If O‐PLS or PLS are instead used for the exploration of features

in large systems biology data sets, the algorithms are likely to
lead to factorizations of the data that are difficult to interpret.
Preprocessing by clustering or variable selection may improve
the situation by giving the algorithms smaller, more manageable
subsets on which to work. However, the search for single vectors
explaining maximal variance tends to conflate intuitively
independent features. Depending on the application, it may
be beneficial to instead incorporate specific knowledge directly
into whichever algorithm is being used, be it non‐negativity of
the spectral matrices [21,22], statistical independence of the
underlying factors [23,24], or sparsity of the data [18,25].
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Appendix
The following are the proofs of Theorems (a) and (b).

Proof

(a) Because both X and Y are assumed to be of rank n andm, p≥ n,
K is of rank n and, by assumption that all PCA components of K
are significant, we can write K ¼ CWT from Eqn 1.4 with A= n. A
standard result of linear algebra is that the dimension of the
row space of X is equal to the matrix rank n, so we just need to
show that each column of W belongs to the row space of X.
Then the columns of W must form an orthonormal basis for
the row space of X and the result follows.

We show that the columns of W belong to the row space of X
by contradiction. Assume that column i ofW is orthogonal to the
row space of X. Multiplying both sides of Eqn 1.4 by XT from the
right, we see on the right hand side that XXT is an n× nmatrix of
rank n, implying that KXT ¼ YTXXT is also of rank n. On the left
hand side, the n× n matrix WTXT is of rank at most n‐1 because
row i is composed of all zeros (by the orthogonality of row i ofW
to all rows of X). This implies KXT ¼ CWTXT is of rank at most
nn1, a contradiction. Therefore, all of the columns of W belong
to the row space of X and, because they are orthonormal and
rank(X)= n, form an orthonormal basis for the space. Hence,
XWWT ¼ X and Exy ¼ 0.

(b) The assumption that the column space of X belongs to the
column space of Y implies that ry ¼ rank Yð Þ≥rx , which in turn
implies that rank Kð Þ ¼ rx . Because all rx of these components are
assumed to be significant, the loading matrix W contains rx
orthonormal basis vectors in its columns. On account of the fact
that dim rowspace Xð Þð Þ ¼ dim colspace Xð Þð Þ ¼ rx , the columns of
W form an orthonormal basis for the row space of X. The proof
of this is identical to the one given (i.e., assume at least one
column of W is orthogonal to the row space of X, and show that
this leads to a contradiction about the rank of KXT ). It follows
again that XWWT ¼ X and Exy ¼ 0. □
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