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Applications of computational science for understanding
enzymatic deconstruction of cellulose
Gregg T Beckham1,2,3, Yannick J Bomble4,5, Edward A Bayer6,
Michael E Himmel4,5 and Michael F Crowley4,5

Understanding the molecular-level mechanisms that enzymes

employ to deconstruct plant cell walls is a fundamental

scientific challenge with significant ramifications for renewable

fuel production from biomass. In nature, bacteria and fungi use

enzyme cocktails that include processive and non-processive

cellulases and hemicellulases to convert cellulose and

hemicellulose to soluble sugars. Catalyzed by an accelerated

biofuels R&D portfolio, there is now a wealth of new structural

and experimental insights related to cellulases and the

structure of plant cell walls. From this background,

computational approaches commonly used in other fields are

now poised to offer insights complementary to experiments

designed to probe mechanisms of plant cell wall

deconstruction. Here we outline the current status of

computational approaches for a collection of critical problems

in cellulose deconstruction. We discuss path sampling

methods to measure rates of elementary steps of enzyme

action, coarse-grained modeling for understanding

macromolecular, cellulosomal complexes, methods to screen

for enzyme improvements, and studies of cellulose at the

molecular level. Overall, simulation is a complementary tool to

understand carbohydrate-active enzymes and plant cell walls,

which will enable industrial processes for the production of

advanced, renewable fuels.
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Introduction
Enzymatic deconstruction of plant cell walls to fermenta-

ble sugars is a primary, near-term option currently being

pursued for the production of advanced biofuels. Driven by

significant, international R&D efforts for biofuels, there

exists a new wealth of experimental data about the chem-

istry and structure of plant cell walls and the mechanisms

that cellulase and hemicellulase enzymes use to decon-

struct cell wall polysaccharides [1]. It is noteworthy, how-

ever, that we still lack sufficient data to explain cell wall

deconstruction, even though elucidation of these steps is

crucial to develop enhanced conversion processes. Here,

we discuss the challenges, opportunities, and early suc-

cesses of theory and simulation to aid our understanding of

mechanisms of plant cell wall deconstruction and in cat-

alyst design. We also present, where appropriate, examples

computational methods that can be applied to a given

problem into the complex problem of cell wall deconstruc-

tion with the advent of improved simulation codes and

computational power (Figure 1). We limit the scope to

research of cellulose and cellulases from the last three

years, but many of the discussions are extendable to

hemicellulases, chitinases, and other carbohydrate-active

enzymes [2�,3�]. We hope that this opinion illustrates to

computational researchers from other fields that new,

exciting opportunities exist in biomass conversion, and

to biomass researchers that their work can be greatly

enhanced by using computational science.

Plant cell wall polymer models
The study of cellulose requires: (i) reliable structural

models and (ii) accurate potentials to describe cellulose.

Structural models of plant cellulose have been proposed

with 36 cellulose chains per elementary fibril (microfibril),

although this has not been directly verified experimentally

[4]. Further experimental characterization of plant micro-

fibrils will aid in the construction of more accurate repres-

entations of microfibrils for simulations. Two popular

atomistic potentials for carbohydrates are GLYCAM [5],

which is consistent with the Amber force field [6] and C35

[7,8], which is consistent with the CHARMM force field

[9]. C35 will likely be widely utilized because it can be

applied with commonly used simulation molecular

dynamics (MD) packages such as CHARMM [9], NAMD

[10], and now, via the CHAMBER program [11] in Amber

[6], and it is consistent with the large class of biological

molecules (e.g., proteins, lipids, and nucleic acids) in the

CHARMM force field [9]. Both force fields can also

describe xylose and other carbohydrates, making them
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appropriate to model other polysaccharides of the plant cell

wall.

There is debate regarding the appropriate manner in

which to simulate cellulose at atomistic resolution with

MD, namely with infinite crystals or with finite crystals

[12]. For finite crystals, the cellulose microfibrils will twist

in MD simulations along the chain axis [4], whereas

infinite crystals will prohibit twisting or large confor-

mational changes because of the bonds across the periodic

boundaries of a simulation cell [13]. Also, for finite

crystals, it is likely that no cellulose simulations to date

have been conducted long enough to equilibrate the

structures adequately. Simulations up to the microsecond

time scale are now readily accessible for crystals of the

same size as in [4], and will likely be required to obtain

equilibrated systems and to investigate the nature of

microfibril twist at long times.

Petridis and Smith adapted the CHARMM potential to

model lignin [14]. However, as the authors discuss, the

structure and arrangement of lignin monomers are

unknown experimentally. Thus, realistic MD simulations

of lignin are not likely feasible until additional exper-

imental characterization is conducted to ascertain

relevant lignin chemistry and connectivity more directly.

This will remain problematic if lignin is randomly

assembled by free radical driven processes into complex,

3-dimensional structures. Additionally, modeling the

‘whole’ plant cell wall with MD necessitates more accu-

rate descriptions of the plant cell wall at the molecular

level, in terms of both the molecular connectivity and the

3-dimensional arrangement of the cell wall polymers.

Free cellulases
Free cellulases usually consist of one or more carbohydrate-

binding modules (CBMs), one or more linkers, and cata-

lytic domain (CD), as shown in Figure 2. The CDs of

processive cellulases have tunnels for threading cellulose

chains, whereas CDs of non-processive cellulases instead

have clefts for binding to accessible chains [15]. Here we

discuss the Trichoderma reesei Family 7 processive cellobio-

hydrolase (Cel7A), as it has been thoroughly characterized

experimentally. Also, cellulases often exhibit N-glycosyl-

ation and O-glycosylation imparted by the expression host,

which can affect activity [16�]. Figure 2 shows the steps

232 Plant biotechnology

Figure 1

Methods in computational science span multiple spatial and temporal scales from atomic resolution to the application of coarse-graining at multiple

resolutions. Listed here are typical techniques applied at various scales with general questions of interest in enzymatic deconstruction of plant cell wall

polysaccharides for which computational science can play a role.
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that Cel7A undergoes to deconstruct biomass with a

hypothesized free energy landscape: (a) binding via the

CBM to the hydrophobic face of cellulose [17], (b) surface

diffusion to find a free, reducing chain end, (c) threading of

the chain into the tunnel, (d) formation of the active

complex, (e) hydrolysis of the glycosidic linkage to produce

cellobiose, and (f) product expulsion, and threading of

another cellobiose unit to re-form the active complex.

As such, Cel7A processes a cellulose chain until it is fully

hydrolyzed or until the enzyme is deactivated [18��]. The

thermodynamics and kinetics of each step in Figure 2

represent a challenge to probe experimentally and com-

putationally. Additionally, the roles of the CBM and linker

at the molecular level are not fully characterized

[19,20�,21–23]. Because of computational expense, it is

likely to be more efficient to first examine individual

components of cellulases.

To that end, the CBM on the hydrophobic cellulose face

[17] has been studied using atomistic and coarse-grained

models [20�,21], and it was demonstrated that the CBM

exhibits regions of thermodynamic stability every cello-

biose unit (�1 nm) along a cellulose chain. From the

atomistic simulation, four amino acids were shown to be

responsible for this behavior, which all form strategic

hydrogen bonds every cellobiose unit [20�]. It is note-

worthy that the CBM alone diffuses on the same critical

length scale as the catalytic product of Cel7A, and the four

residues responsible for this behavior are highly con-

served in Family 1 CBMs.

Elucidating the reaction coordinate (RC), or mechan-

ism, of threading of a cellobiose unit to form the active

complex is an ideal problem for rare events simulation

methods [24,25]. These methods have been applied in

other fields to understand phase transitions and biomo-

lecular conformational transitions [26–28]. Aimless

shooting with likelihood maximization or forward-flux

sampling with least squares-estimation could yield the

RC to determine the threading mechanism. On a

Applications of computational science Beckham et al. 233

Figure 2

The Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) acting on cellulose. Cel7A is comprised of a 36-amino acid CBM, a linker domain with O-

glycan (dark blue), and a large catalytic domain with N-linked glycan (pink) and a 50-Å tunnel for processing cellulose chains (green). The cellobiose

product is shown in yellow (e) and (f). Here we show the putative steps that Cel7A takes to deconstruct biomass and the hypothesized free energy

surface for each elementary step.
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related note, Eijsink et al. demonstrated the importance

of the aromatic residues that line the tunnels of chit-

inases (cellulases and chitinases are structurally and

functionally similar) by mutating aromatic residues to

alanine, and measuring the processivity rates on crystal-

line chitin and soluble chitosan [29��,30��]. Using rare

event simulation [24,25] to measure the free energy

barriers to threading combined with free energy per-

turbation techniques [31,32] to mutate aromatic resi-

dues and polar residues in cellulase (and chitinase)

tunnels will yield molecular-level insights into these

intriguing experimental observations. These types of

simulations will also likely yield insights into recent

atomic force microscopy (AFM) data from Igarashi et al.
on Cel7A [33��]. The effect of polar residues has not

been probed experimentally, and thus offers opportu-

nity for insights and predictions directly from simu-

lation. Alchemical free energy calculations will also

guide experimental efforts in tuning the binding free

energy of the ligand in the CD, which may have

significant ramifications for general cellulase deactiva-

tion, exemplified by processive enzymes becoming

immobilized at certain points along a cellulose chain

[18��].

Another key thermodynamic barrier to cellulose decon-

struction is the decrystallization of a cellulose chain from

the polymer crystal (Figure 2). Because different cellu-

lose polymorphs exhibit different conversion rates, it is

probable that the decrystallization free energy will

depend on the crystal packing. This is an ideal question

for free energy simulations (e.g., umbrella sampling

[34,35]) over an RC designed to decrystallize a single

cellulose chain. The RC for this process should not over-

constrain the flexibility of the cellulose chain being

decrystallized (e.g., as pulling from an end of the chain

would), as entropic effects are likely to play an important

role in the decrystallization process. For cellulose decrys-

tallization, the only existing calculation was reported by

Bergenstråhle et al. [13] who used steered MD to pull a

cello-octaose chain placed randomly on the hydrophilic

faces of a cellulose crystal. Similar calculations with

relevance to enzymatic deconstruction, however, should

be conducted with an improved RC from the hydro-

phobic cellulose face and crystal corners as these are

the likely points of surface attack by cellulases [17].

These calculations would also aid in the design of organic

or novel solvents for dissolving cellulose, for example,

ionic liquids [36].

The hydrolysis reaction conducted by processive cellu-

lases is likely to be a major contributor to the rate-limiting

step. Simulations of reactions in enzymes with a hybrid

quantum mechanics-molecular mechanics (QM/MM)

approach [37,38] will be necessary to understand hydroly-

sis mechanisms. Barnett et al. used density functional

theory free energy calculations to elucidate the preferred

conformation needed to stabilize the transition state

conformation in T. reesei Cel7A [39]. The next steps will

be to elucidate the mechanism of the hydrolysis reaction

with free energy methods, such as umbrella sampling or

transition state search algorithms.

The product expulsion step is also an important thermo-

dynamic parameter for developing models of cellulase

action due to product inhibition. For cellobiose expulsion

from cellulase tunnels, absolute binding free energy

calculations [40,41] or steered MD [42] can be conducted

to measure the work required to remove cellobiose from

the product site. In these thermodynamics methods, care

should be taken to sample appropriately the confor-

mations of the protein and carbohydrate, and the effect

of the N-glycosylation (Figure 2) should also be con-

sidered.

Relevant to understanding the role of the linker domain

in cellulose hydrolysis, Ting et al. recently developed a

master equation approach to calculate the steady-state

hydrolysis rate of a processive cellulase like Cel7A [43].

The authors modeled the CBM and CD as random

walkers coupled by a linker represented as a spring

and found that the steady state hydrolysis rate was

maximized at intermediate linker stiffness. The authors

noted that a probability distribution of the Cel7A linker is

not available. To that end, replica-exchange MD

(REMD) [44] was recently used to construct the prob-

ability distribution for the Cel7A linker with the native

glycosylation pattern, and the linker was shown to be an

intrinsically disordered protein with a significant degree

of flexibility [45,46]. Whereas some cellulase and/or

cellulosomal linkers are inherently flexible [46,47],

others are fixed integral components of the parent protein

likely secure the conformations of the adjacent func-

tional modules [48]. Because linker domains are prolific

in both free and complexed cellulases, enhanced

sampling methods for small proteins (i.e. on the order

of 10 s of residues) like REMD offer a powerful approach

to probe intrinsic flexibility and disorder.

Cellulosomal enzymes
Complexed enzymes are found in some bacteria and a few

fungi where multiple carbohydrate-active enzymes are

bound to protein scaffolds via cohesin–dockerin inter-

actions to form a complex termed ‘cellulosome’ [49].

There are many open questions at multiple resolutions

regarding the cellulosome structure and function for

which simulations can offer valuable insight. Here, we

review several open questions across multiple length and

time scales, which are summarized in Figure 3.

At low resolution, self assembly of cellulosome com-

ponents onto the scaffold is not well understood. To that

end, a coarse-grained model was recently constructed

consisting of three representative dockerin-containing

234 Plant biotechnology
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enzymes and a scaffoldin, containing cohesin modules

connected by flexible linkers, to study the potential effect

of enzyme size, flexibility, and shape on binding affinity

(Figure 3(a)) [50�]. It was observed that the large

(�140 kDa) Family 9-containing, multi-modular enzyme,

CbhA, binds with greater affinity (in the limit of micro-

scopic diffusivity) because of significantly greater flexi-

bility.

At slightly higher resolution is the solution behavior of

CbhA (Figure 3(b)) [51]. CbhA consists of seven protein

domains including CBMs, a processive CD, a domain of

unknown function called the X1 domain, and an immu-

noglobulin-like domain connected by linkers. Small-

angle X-ray scattering (SAXS) and rigid body MD or

REMD can be used in concert to elucidate the solution

behavior of this enzyme to better understand the inter-

actions that might exist between these modules [52�].

At atomistic resolution (Figure 3(c)), there are many

interesting questions about enzyme–substrate inter-

actions in cellulosomal action. For example, the X1

domain in CbhA has been hypothesized either to disrupt

cellulose or to be an extended linker in the presence of

cellulose [53]. Steered MD can be used to study the

extension mechanism of the X1 protein module by forced

unfolding [54]. Valbuena et al. applied this method to test

the mechanical stability of cohesin domains from cellu-

losomal scaffoldins [55�]. Similar to single-molecule pull-

ing experiments, these experiments will provide an idea

of the work needed for individual modules to unfold.

These simulations can be compared to experimental

techniques such as SAXS, fluorescence resonance energy

transfer (FRET), and AFM pulling.

Additionally, the cohesin–dockerin interaction is one of

the strongest non-covalent interactions known in proteins

Applications of computational science Beckham et al. 235

Figure 3

Multi-scale modeling can aid in the understanding of the cellulosomal complex and enzyme–cellulose interactions in the cellulosome. Here are several

open questions at various degrees of resolution together with methods to probe each question. (a) A simple coarse-grained model has been

developed to study self assembly of the entire cellulosome enzyme complex as a function of enzyme concentration and other relevant variables. (b)

Rigid body MD enables calculation of solution behavior directly from simulation to compare with SAXS and FRET experiments of the large CbhA

enzyme. (c) Multiple scientific questions exist at the atomistic scale that can be examined with methods such as rare event simulation to understand

mechanisms of threading cellodextrin chains into cellulase tunnels, free energy perturbation methods for relative binding free energies and absolute

binding free energies of carbohydrates to cellulases and CBMs, docking calculations to understand the non-covalent binding at the atomic scale,

steered MD to understand the work to extend putatively flexible proteins, and REMD to understand intrinsic disorder.
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[56]. Schueler-Furman et al. used RosettaDock to predict

the structure of the cohesin–dockerin complex with high

accuracy. Their work combined with more detailed

thermodynamic methods makes possible the design of

new cohesin–dockerin interactions to make designer cel-

lulosomes with known components at specific locations.

CBM–cellulose interactions in cellulosomal enzymes

have also been probed in a recent combined experimen-

tal–computational study [57]. Alahuhta et al. showed that

a tryptophan residue located on a loop at the edge of the

binding site cleft of CbhA CBM4 strongly interacts with a

cellodextrin chain bound in the cleft. This result is

significant because this tryptophan residue is unique to

this CBM module, which hints that it might have a

different function than other Family 4 CBMs.

Computational screening of cellulases for
improved activity
The primary method used for improving cellulase activity

to date is increasing protein thermal stability, for which

computation offers significant benefits [58]. Heinzelman

et al. computationally recombined 8 structural blocks from

three wild-type Family 6 cellulases (Cel6A) to produce a

library of Cel6A cellulases with improved thermal

stability and activity [58]. High-throughput, compu-

tational screening tools like that used by Heinzelman

et al. or with Rosetta [59] will aid the design of more

thermally tolerant enzymes.

Conclusion
Knowledge of the elementary steps in cellulase action is

essential for building enhanced models of cellulose

deconstruction, which will in turn guide development

of enhanced cellulase systems. Driven by the wealth of

new experimental data on cellulases and cellulose, com-

puter simulations are beginning to play an increasingly

significant role in understanding the structure–function

relationships of enzymatic cellulose deconstruction. By

using a versatile portfolio of computational methods,

simulations can offer insights that are complementary

to experiments for understanding cellulase–cellulose

interactions and for designing enhanced enzymes for

biomass conversion. When possible, simulation results

should be verified experimentally. In some cases, how-

ever, experimental approaches, for example, using recom-

binant technologies for expression of active and soluble,

large multi-modular cellulases or cellulosomal com-

ponents, or synthetic approaches, may be severely limited

or impractical. In such cases, therefore, computational

science may be the preferred or exclusive option.
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