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Abstract Bioethanol production output has increased

steadily over the last two decades and is now beginning to

become competitive with traditional liquid transportation

fuels due to advances in engineering, the identification of

new production host organisms, and the development of

novel biodesign strategies. A significant portion of these

efforts has been dedicated to mitigating the toxicological

challenges encountered across the bioethanol production

process. From the release of potentially cytotoxic or inhi-

bitory compounds from input feedstocks, through the

metabolic co-synthesis of ethanol and potentially

detrimental byproducts, and to the potential cytotoxicity of

ethanol itself, each stage of bioethanol production requires

the application of genetic or engineering controls that

ensure the host organisms remain healthy and productive to

meet the necessary economies required for large scale

production. In addition, as production levels continue to

increase, there is an escalating focus on the detoxification

of the resulting waste streams to minimize their environ-

mental impact. This review will present the major toxico-

logical challenges encountered throughout each stage of

the bioethanol production process and the commonly

employed strategies for reducing or eliminating potential

toxic effects.
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Introduction

The rise and importance of bio-based ethanol

production approaches

The potential for ethanol to serve as a transportation fuel

has been recognized for over a century. In 1826, Samuel

Morey developed one of the earliest versions of the internal

combustion engine, which he engineered to run using a

combination of ethanol and turpentine. While his techno-

logical approach was innovative, the prevalent use of steam

power overshadowed its adoption. Nicholas Otto renewed

interest in ethanol-fueled combustion engines in 1860,

however, the advent of the industrial age, which redis-

tributed jobs from farming to manufacturing and increased

taxes on alcohol, again caused the widespread use of

ethanol to lose momentum. Several decades later, by the
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1890s, ethanol had nonetheless reestablished itself as a

common fuel, and in 1896 Henry Ford developed the

Quadricycle, the first known vehicle to operate on 100 %

ethanol. However, soon after, the discovery of significant

oil reserves in Texas led to widespread use of gasoline,

which continues to this day. Nonetheless, despite gaso-

line’s popularity, several countries including Brazil and

France adopted 90 % gasoline and 10 % ethanol blends

beginning in the early 1900s, and several gasoline/ethanol

demand and price wars have ensued due to the great

depression, World War II, and new innovations in trans-

portation developed during this time period. More recently,

ethanol demand again rose in response to the United States

oil crisis of the 1970s but rapidly decreased as the country

recovered during the 1990s. However, as a result of the

political turmoil generated by these events, the United

States government began to give farmers subsidies for

ethanol production during this time, which has continued to

shape the use of ethanol even today (Kirakosyan and

Kaufman 2009).

Outside of the United States, governmental policies

have greatly influenced the widespread adoption of ethanol

as a transportation fuel in Brazil over the past 40 years.

Beginning in 1975, the Brazilian government launched

ProAlcool, a national program that strived to displace

gasoline with bioethanol. Within 10 years of ProAlcool’s

launch, the bulk of cars in Brazil required ethanol blends

containing 96 % bioethanol and 4 % water. By 1993 the

Brazilian government had mandated that all remaining

gasoline be blended to contain 20–25 % ethanol, and by

1999 the ProAlcool program began to be phased out as

sustained bioethanol production required less government

intervention and private companies penetrated the market

(Balat and Balat 2009). Despite Brazil’s heavy exploitation

of ethanol, the United States remains as the world’s largest

ethanol producer (Chen and Khanna 2013), with govern-

mental policies such as tax legislation, tax credits, and

subsidies driving ethanol production and maintaining its

competitiveness. The Energy Policy Act of 2005 estab-

lished a renewable fuel standard (RFS) within the United

States, which, as revised 2 years later by the Energy Policy

Act of 2007, required that the amount of renewable fuels

blended into transportation fuels increase by 27 billion

liters between 2008–2022, with a minimum of 44 % of this

ethanol derived from cellulosic sources (Balat and Balat

2009). By 2013 88.7 billion liters of ethanol were being

produced annually in the United States, representing a

significant increase from the 48.0 billion liters produced in

2007 (Scully and Orlygsson 2015). This increase may be

due in part to the enactment of the volumetric ethanol

excise tax credit (VEETC), which provided tax credits for

blending ethanol with gasoline to offset the cost of pro-

ducing ethanol domestically (Yacobucci et al. 2010). In

addition to VEETC, the United States also established

tariffs to curb the importation of sugarcane ethanol and

encourage domestic ethanol production (Chen and Khanna

2013), however, both VEETC and the tariffs were allowed

to expire in 2011.

Nonetheless, despite the application of these govern-

ment policies supporting ethanol fuel use, factors such as

cost and energy density per unit volume have continued to

sustain the use of gasoline and diesel over ethanol fuel

sources (EIA 2013). However, as technologies for ethanol

production and utilization continue to improve, it is

important to continually reevaluate the benefits of bioe-

thanol-based fuels relative to their petroleum-derived

counterparts (Table 1). Perhaps the important step towards

realizing these benefits will be the reduction in ethanol

production costs to the point where they are competitive

with existing transportation fuels at the commercial level.

To achieve this goal, the market will need to focus on

either a thermochemical or bio-based production format in

order to standardize production infrastructure and reach an

appropriate economy of scale. In the thermochemical

approach, steam is mixed with ethene, a hydrocarbon iso-

lated from crude oil. This approach involves a phosphoric

acid catalyst and requires high pressure (60 atm) and

temperature (300 �C). While this approach is not only

energy intensive and costly, it also still requires the use of

fossil fuels as precursors. In contrast, the bio-based

approach employs renewable materials, commonly in the

form of agricultural wastes or plant biomass, to generate

ethanol using the metabolic activity of microorganisms.

These feedstocks contain complex carbohydrates, starches

and/or sugars, which are substrates for microbial fermen-

tation and conversion to ethanol. While the thermochemi-

cal production approach provides more rapid reactant

conversions and ensures pure product formation, the bio-

based approach provides a significant advantage in that it is

fully independent from crude oil and holds the potential for

lower production costs at a fully operational scale (Hirst

2002).

These bio-based strategies can employ any number of a

diverse group of microorganisms that produce ethanol

directly from sugars or hydrolyzed starches, or from pre-

treated, hydrolyzed biomass. Alternatively, more complex

feedstocks such as cellulosic biomass can also be converted

to ethanol using consolidated bioprocessing techniques,

which utilize the performance of enzymatic hydrolysis and

fermentation by a single microorganism (Lynd et al. 2002,

2005). While many microorganisms generate ethanol, the

efficiency amongst them varies greatly and eliminates the

practical industrial usage of many. Ideally, therefore, a

viable candidate organism for ethanol production will

generate more than 1 g ethanol/l/h, yield ethanol in excess

of 90 % of its theoretical value for the provided feedstock
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input, tolerate ethanol concentrations greater than 40 g/l,

be capable of growth at elevated temperatures and/or in

acidic conditions, demonstrate resistance towards typical

inhibitory compounds, and be economical to grow and

maintain (Dien et al. 2003). Finally, the microbe should be

able to utilize an extensive set of substrates, require only

minimal input of simple nutrients to sustain growth, and

generate ethanol as its major or exclusive product (Scully

and Orlygsson 2015).

Commonly employed microbes for bio-based

ethanol production

Saccharomyces cerevisiae, Zymomonas mobilis, Escher-

ichia coli, and Clostridium thermocellum have emerged as

common fermentation hosts for bio-based ethanol produc-

tion (Table 2). S. cerevisiae is a yeast that has an extensive

history in industrial fermentation and exhibits exceptional

ethanol tolerance (Ginley and Cahen 2011). Z. mobilis is a

bacterium that produces ethanol at concentrations 2.5-times

greater than S. cerevisiae and can generate ethanol in

excess of 90 % the theoretical yield (Weber et al. 2010).

The classic bacterial production host E. coli is also used

since it requires only simple nutritional inputs for growth

and maintenance and has a lengthy history of use in

recombinant technologies. Similarly, C. thermocellum, a

thermophilic, Gram-positive bacterium, is employed due to

its unique ability to naturally produce enzymes that

hydrolyze a number of plant components and ferment

cellulose-derived hydrolysis products.

Each of these microorganisms possesses unique advan-

tages for ethanol production. However, none is naturally

capable of expressing all of the idealistic ethanol

production traits. For instance, yeasts such as S. cerevisiae

can carry out fermentation at low pH, which minimizes

contamination, and are traditionally separated from fer-

mentation media easier than bacteria. Thermophilic

microorganisms such as C. thermocellum can carry out

fermentation at higher temperatures, which lowers vis-

cosities, increases potential substrate loadings, and mini-

mizes the need for cooling, but have limited genetic

tractability and are not as well characterized as S. cere-

visiae or E. coli (Scully and Orlygsson 2015; Weber et al.

2010). E. coli, unlike some ethanologenic microbes, can

metabolize pentose sugars, but also experiences growth

difficulties in the presence of glucose due to pentose cat-

abolism repression. Furthermore, it does not tolerate etha-

nol as well as yeast, and is sensitive to environmental

factors such as temperature and pH (Weber et al. 2010).

These shortcomings do not immediately eliminate any of

these microorganisms as bioethanol production hosts, but

require the innovative application of toxicological mitiga-

tion strategies for improving their growth and ethanol

synthesis characteristics if they are to usher in a new age of

commercially viable bioethanol production.

Common culture strategies for bioethanol

production and methods for mitigating their

toxicological challenges

Batch culture

Batch cultures are closed systems where an inoculum is

added to a vessel, and the cells then propagate over time.

Throughout the batch process, neither the medium nor the

culture broth are withdrawn, nor are additional volumes

Table 1 Benefits of increased

bioethanol fuel usage
Promotes energy independence by reducing crude oil imports

Allows domestic production from renewable resources

Lowers emissions when used as a gasoline additive or replacement

Promotes carbon dioxide offset when produced using bio-based sources

Stimulates agricultural employment in rural areas

Competes with gasoline and diesel to lower crude oil and refined fuel prices

Aids in meeting the world’s increasing energy demands

Table 2 Representative microorganisms used for bioethanol production

Organism Type Gram ? /- Typical fermentation

conditions

E. coli Anaerobic, mesophilic bacterium – pH 6.0–8.0, 35 �C
Z. mobilis Facultative anaerobic, mesophilic bacterium – pH 4.0–5.0, 30–40 �C
C. thermocellum Anaerobic, thermophilic bacterium ? pH 6.0–8.0, 60 �C
S. cerevisiae Anaerobic, mesophilic yeast N/A pH 4.5–6.5, 25–35 �C
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added to the vessel (with the exception of chemical addi-

tions for environmental regulatory processes such as pH

control). As a result of this strategy, nutrient levels and cell

populations will continually vary over the course of the

fermentation. Cell growth in batch cultures can be divided

into four phases: lag, exponential, stationary, and death.

The lag phase describes the period between the introduc-

tion of the inoculum to the medium and the period when

growth becomes apparent. The exponential phase describes

the progression of microbial propagation, where nutrients

are being exhausted and toxins are accumulating. The

stationary phase describes the stage at which the rate of cell

propagation equals the rate of cell death, while the death

phase describes the period at which microbial population

levels decline. Upon completion of fermentation, the vessel

is drained, cleaned, sterilized, and filled with new medium

in preparation for the next fermentation batch. Using the

batch culture strategy, the primary toxicological limitations

are the corresponding nutrient limitations and the

accumulation of waste or cytotoxic metabolic products

(Fig. 1a).

Modified (or fed) batch culture

Modified batch cultures are similar to batch cultures, with

the exception that nutrients are either constantly or occa-

sionally fed to the culture medium in the fermentation

vessel. Under this design, a low initial substrate concen-

tration is commonly employed, and the medium is gener-

ally added to less than half of the volume of the

fermentation vessel. The inoculum is then added to the

vessel and fermentation proceeds. As the substrate is con-

sumed, additional substrate is slowly added back to the

vessel, and the volume increases accordingly. Following

the completion of fermentation, the vessel is drained and a

small percentage of the inoculum is retained to inoculate

the next batch (Ezeji et al. 2006). This strategy permits

extended growth periods and greater cell densities and

Fig. 1 Cytotoxic exposure profiles vary among the different culture

strategies. a Using a batch fermentation strategy, potentially cytotoxic

compounds can accumulate throughout the process due to the closed

nature of the system. b The extended logarithmic phase of the

modified-batch fermentation process temporarily reduces cytotoxic

compound exposure comparison to batch fermentation through the

dilutive effect of medium addition. c By employing an equal rate of

medium addition and culture extraction, the continuous fermentation

strategy can reduce exposure to cytotoxic byproducts or fermentation

end points

H. Akinosho et al.

123



encourages secondary metabolite production. However,

because the culture medium is not removed, the toxico-

logical challenges of waste and cytotoxic metabolic pro-

duct formation remain, but are subject to dilution effects

concurrent with medium addition (Fig. 1b).

Continuous culture

The use of a continuous culture strategy extends the

exponential phase of microbial growth by maintaining

steady growth rates (Fig. 1c). This growth method is

commonly performed in a chemostat, which automatically

withdraws spent culture medium and replaces it with fresh

medium in a fixed-volume vessel. Under this design, den-

sities, which are nutrition limited, dictate the feed rate of

the medium to maintain constant growth rates. Perfusion

culture continuously feeds and withdraws cell-free medium

from the fermentation vessel to maintain the steady state.

This circumvents the lag phase of growth, as well as the

extensive cleaning and sterilization procedures observed in

batch cultures, but incurs significant additional cost and

increasingly complex equipment to perform.

Combined (or co-) culture

Co-culture, which can be performed under any of the above

mentioned culture strategies, uses two microorganisms to

ferment a substrate in a sterilized environment. The co-

culture approach presents several unique benefits such as

improved feedstock utilization efficiency and the simulta-

neous performance of metabolic reactions that cannot be

achieved efficiently using a single organism, but also

requires the careful selection of co-culture partners in order

to ensure they are compatible under the same fermentation

conditions and do not adversely affect one another due to

their disparate metabolic processes and varying toxico-

logical resistances.

Limitations on bioethanol production imposed

by toxicological challenges

Restrictions imposed on feedstock inputs

Bio-based ethanol production will need to accommodate a

variety of different feedstocks in order to achieve the

economic targets required for competition with fossil fuels.

However, the incorporation of varying feedstock classes

poses toxicological challenges that must be dealt with in

order to support downstream microbial fermentation. The

lignocellulosic biomass feedstock class represents perhaps

the largest untapped resource for bioethanol production,

but its intricate structure has hindered its cost-effectiveness

and marketability. Due to its high level of complexity,

lignocellulosic biomass often requires a pretreatment step

that employs chemical, physical, and/or biological means

to facilitate the enzymatic hydrolysis of cellulose into

sugars, often generating inhibitors that can lead to cyto-

toxicity (Jönsson et al. 2013). As a result, strategies must

be developed to achieve the detoxification of pretreated

lignocellulosic materials. These strategies can take the

form of biological methods, such as the development of a

recombinant Z. mobilis ZM4 (pHW20a-fdh) with the abil-

ity to break down the inhibitor formate (Dong et al. 2013)

and the overexpression of oxidoreductases in S. cerevisiae

to manage furfural toxicity (Heer et al. 2009), or chemical

engineering methods such as overliming and neutralization

of pretreatment hydrolysates (Mohagheghi et al. 2004,

2006).

The hemicellulose biomass feedstock class, while not

directly inhibitory, also poses a challenge to obtaining

optimal yields because it contains both hexose and pentose

sugars as potential fermentation substrates. Therefore,

when this class of feedstock is employed, it is important to

use a production host capable of metabolizing the full suite

of released substrates. Z. mobilis, for example, can ferment

glucose, fructose, sucrose, raffinose, and sorbitol, and has

also been engineered to utilize pentoses (Kuhad et al.

2011). S. cerevisiae ferments a broader range of pentoses,

hexoses, disaccharides, oligosaccharides, dextrins, and

starches. C. thermocellum is capable of fermenting glucose,

cellobiose, and cellooligosaccharides, and E. coli can fer-

ment a wide range of sugars (Rao et al. 2011). When

feedstocks with high hemicellulose contents are employed,

ethanologenic microorganisms that can ferment both pen-

toses and hexoses are often employed. This approach

minimizes waste product generation and maximizes etha-

nol yield by using a greater proportion of the biomass

sugars, but limits the number of potential hosts that can be

used.

Restrictions imposed on product formation

Ethanol production by microorganisms is the result of a

long chain of metabolic reactions. The root metabolic

process leading to ethanol production is glycolysis, a series

of enzyme-catalyzed reactions that convert glucose into

pyruvate in order to generate the energy and reducing

equivalents required for driving downstream cellular

activity such as ethanol production. While glucose cata-

bolism occurs via the Embden-Meyerhof-Parnas pathway

for the majority of ethanol production hosts, in Z. mobilis it

is achieved through the Entner-Doudoroff pathway instead

(Joachimsthal et al. 1998). Regardless of the route taken to

catabolize glucose to pyruvate, downstream fermentation

pathways are then used to convert pyruvate to organic

compounds such as ethanol. While, in this context, ethanol

Toxicological challenges to microbial bioethanol production and strategies for improved tolerance
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is the product of interest, it is by no means the only product

generated in this process. As a result, there are ample

opportunities for deleterious byproducts to accumulate

during the fermentation process. In some cases, these

products are toxic and can result in detrimental effects on

growth and metabolism. However, even when these

byproducts are not cytotoxic, it is beneficial to minimize

their formation in order to improve ethanol yields (Herrero

et al. 1985b; Warnecke and Gill 2005), as has been

demonstrated following metabolic engineering of flux in C.

thermocellum (Argyros et al. 2011; Biswas et al. 2014,

2015; Rydzak et al. 2011). Unfortunately, caution must

also be exercised to ensure that ethanol production does not

reach concentrations that themselves have detrimental

effects towards these microorganisms and their fermenta-

tive capabilities (Ma et al. 2013). These opposing chal-

lenges present a particularly interesting tightrope that must

be walked in order to achieve economical bioethanol pro-

duction, where, from an engineering standpoint, production

should always be increased, but, from a biological stand-

point, lower production levels support improved host

health and synthesis efficiency.

Restrictions imposed on co-culture strategies

Co-culture, during which two microorganisms are con-

comitantly grown under aseptic conditions, is sometimes

applied to enhance the fermentative abilities of a single

microorganism or to augment substrate utilization. This

approach is commonly encountered when hosts such as C.

thermocellum, which can hydrolyze cellulose and hemi-

cellulose to hexoses and pentoses, but can utilize only

hexoses, are employed. Rather than forfeit the use of the

released pentose sugars, C. thermocellum can be paired

with Thermoanaerobacterium saccharolyticum, a non-

hemicellulolytic anaerobic thermophile that metabolizes a

broader range of substrates, to increase ethanol yield.

Using this strategy, metabolically engineered C. thermo-

cellum and T. saccharolyticum have yielded 38.1 g etha-

nol/l from 92.2 g/l of Avicel (Argyros et al. 2011).

Similarly, Xu and Tschirner created a C. thermocellum

ATCC 27405 and Clostridium thermolacticum ATCC

43739 co-culture that enhanced saccharification. While this

co-culture did not eliminate side product formation, it did

generate higher ethanol yields than the individual mono-

cultures alone (Xu and Tschirner 2011). Z. mobilis has also

been employed for co-culture with Pichia stipitis, and has

been shown to efficiently ferment glucose and xylose to

96 % of their theoretical yield (Fu et al. 2009). However,

the co-culture approach also presents a difficult balancing

act with cytotoxicity. For example, one microorganism

may generate ethanol as the primary byproduct, while the

other microorganism carries out mixed acid fermentations.

The resulting secondary metabolites may also be toxic to

one organism despite not being toxic to the other. Other

environmental factors, such as pH or temperature, may also

affect the growth of one of the partners. For example, yeast

will ferment most efficiently at a low pH, which may be

inhibitory to some bacteria.

Common toxicity inputs and their mechanisms
of action

Regardless of the production format employed, microbes

tasked with bioethanol production face a variety of

potentially cytotoxic compounds that are inherent to the

ethanol production process. Some of these, such as the

furans furan-2-carbaldehyde (furfural), 5-hydroxymethyl-

furfural (HMF), and various phenolic compounds, result

from the treatment processes employed to breakdown

biomass and provide the sugars needed for ethanol pro-

duction. Others, such as acetate and ethanol itself, result as

natural byproducts of the organism’s metabolism under

fermentation conditions. Some compounds, such as acids,

remain almost ubiquitous, and can be derived from nearly

all stages of the process in one form or another. While the

timing and intensity of compound exposure can be con-

trolled through the use of differential culture and substrate

treatment methods (Taylor et al. 2012), these chemicals

represent the most common, and problematic, cytotoxi-

cologial challenges encountered throughout the ethanol

production process (Luo et al. 2002). A thorough under-

standing of their toxicological mechanisms of action is

therefore warranted in order to understand how they

manifest their negative impacts on ethanol producing

organisms, as such an understanding is key to mitigating

these effects through the application of proper genetic or

engineering controls.

Cytotoxic byproducts of biomass substrate

treatments

The only economically sustainable method for bioethanol

production is one that relies on the liberation of sugar from

renewable biomass feedstocks. However, this strategy is

complicated in that pretreatment of these materials is often

a necessary prerequisite to obtaining efficient saccharifi-

cation (Klinke et al. 2004; Lin and Tanaka 2006). Along

with the sugars released during this process, the treatment

conditions employed also give rise to the release of furans,

phenolics, and organic acids (Chandel et al. 2007a, 2010;

Mussatto and Roberto 2004; Palmqvist and Hahn-Hägerdal

2000), all of which have been demonstrated to induce

downstream cytotoxic effects (Chandel et al. 2007b, 2011;

Palmqvist and Hahn-Hägerdal 2000). While the resulting
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endpoints of exposure all similarly manifest in the form of

reduced yields and titers, the cytotoxicological mechanisms

that give rise to these detriments vary by compound, and

therefore often require different strategies for mitigation.

Furan compounds

The major furan compounds released during biomass treat-

ment are furfural and HMF. Furfural is derived from the

hemicellulose component of lignocellulosic materials (Zal-

divar et al. 1999). During the treatment process, furfural is

formed via the dehydration of pentose monomers, resulting

in the formation of an aldehyde moiety that is significantly

more reactive (Nimlos et al. 2006; Watanabe et al. 2005).

Via a similar mechanism, HMF is formed from the dehy-

dration of glucose sourced from the cellulosic biomass

component (Taylor et al. 2012). Both furfural and HMF have

been demonstrated to occur at concentrations between 0 and

5 g/l during dilute acid pretreatment of lignocellulosic bio-

mass (Larsson et al. 1999a, 1999b; Martinez et al. 2001;

Ranatunga et al. 2000), however, despite their negative

effects they remain a consistent consideration due to the

prevalence of this treatment method at the industrial scale

(Sierra et al. 2008; Wooley et al. 1999; Yat et al., 2008).

The primary route of cytotoxicity for the furan com-

pounds results from their reactivity with intracellular

components such as nucleic acids and enzymatic proteins

(Mills et al. 2009). Furfural, in particular, has been

demonstrated to lead directly to the mutation of DNA

through the introduction of single stranded breaks at

sequences containing short repeats of either thymine or

adenine residues (Hadi and Rehman 1989; Rahman and

Hadi 1991), as well as through the mediation of large

genetic rearrangements in plasmids (Khan and Hadi 1993).

However, despite the negative genetic impact of exposure,

furans primarily impose growth and metabolic limitations

rather than outright cellular death. In yeast, furans become

inhibitory between 0.5 and 2.0 g/l (Rumbold et al. 2009),

leading to prolonged lag phases as the cells attempt to

detoxify or circumvent their inhibitory effects (Almeida

et al. 2011; Ma and Liu 2010). A similar effect on growth is

observed in prokaryotic species, where exposures up to six-

fold above observed growth-inhibitory concentrations have

not resulted in significant cellular destruction (Zaldivar

et al. 1999). The primary mechanism through which the

furans act, therefore, appears to be their disruption of

metabolic enzymatic functionality. Studies in E. coli have

demonstrated that furans can serve as substrates for alcohol

dehydrogenase as well as aldehyde dehydrogenase and

pyruvate dehydrogenase (Modig et al. 2002). In addition to

these inhibitory roles, their reactivity can also result in the

generation of reactive oxygen species, providing a sec-

ondary pathway through which DNA mutation and protein

inactivation can occur (Allen et al. 2010; Yasokawa and

Iwahashi 2010).

Phenolic compounds

Phenolic compounds such as vanillin, syringaldehyde, and

ferulate, are released primarily from lignin during biomass

processing (Sannigrahi and Ragauskas 2013) and have

been shown to possesses any number of functional moi-

eties, such as hydroxyl, carboxyl, or formyl groups, in

addition to their characteristic phenolic base (Mills et al.

2009). Previous studies have suggested that, following

biomass processing steps, organisms can be exposed to

phenolic compounds at concentrations up to 3 g/l, but that

the specific chemicals observed are dependent on both the

biomass and treatment methods employed (Fenske et al.

1998; Larsson et al. 1999b; Martinez et al. 2000). How-

ever, despite the differences in exposure levels and func-

tional groups presented, the primary cytotoxic mechanism

of action for these compounds is the destabilization or

disruption of the cellular membrane. As a result of this

mechanism, the toxicity of phenolic compounds correlates

with their octanol–water partition coefficient (Kow) (Mills

et al. 2009), which represent their relative hydrophobicity

(the lower the Kow value, the more polar the compound)

(Zingaro et al. 2013). Those phenolics with larger Kow

values are therefore more favored for membrane integra-

tion, resulting in the disruption of membrane gradients and

cellular transport (Fitzgerald et al. 2004) and the alteration

of membrane lipid/protein ratios (Keweloh et al. 1990).

Residual or liberated acids

Ethanol producing microorganisms are exposed to acidic

compounds, primarily weak organic acids, either through

their residual presence following biomass treatment pro-

cedures, as liberated compounds during the biomass

breakdown process, or as naturally produced metabolic

byproducts generated by the organisms themselves. While

steps are traditionally taken to limit the amount of acid that

is carried over from biomass treatment procedures, it

remains important to understand the cytotoxic mechanisms

resulting from acid exposure in order to develop improved

engineering controls and genetic modification strategies

that enhance both fermentation workflow design and the

organism’s tolerance to any residual or liberated acidic

compounds. These mechanisms can manifest through one

of several different cytotoxicological routes. At a basic

level, following introduction into the cell, any acid can

dissociate into its anionic and proton components, resulting

in disruption of transmembrane pH potentials. When this

occurs, ATP production within the cell becomes limited as

the gradient required for ATP synthesis is diminished

Toxicological challenges to microbial bioethanol production and strategies for improved tolerance
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without a corresponding increase in ATP formation (Axe

and Bailey 1995). Under this mechanism, the toxicity of a

given acid is highly correlated with its membrane perme-

ability, with more permeable acids having a greater dis-

ruptive effect on ATP generation and resulting in decreased

growth. The resultant anionic component of these acids can

also contribute to cytotoxicity directly through alteration of

cell turgor pressure, which can result in deleterious growth

phenotypes that negatively affect product yield and titer

(Roe et al. 1998). In addition to these indirect effects, some

acids, such as formic acid and propionic acid, have also

been demonstrated to interfere with DNA, RNA, protein,

and cell wall synthesis. By limiting synthesis of these

components, acid exposure was found to induce a bacte-

riostatic growth phase for E. coli, with the negative growth

effects maintained even following a recovery period in the

absence of acid treatment when compared to non-acid-ex-

posed controls (Cherrington et al. 1990). Similarly, in S.

cerevisiae, exposure to acetic acid has been shown to

effectively knock out pentose sugar consumption, leading

to the over accumulation of pentose-phosphate pathway

intermediates and inhibiting growth (Hasunuma et al.

2011).

Residual or liberated salts

The presence of ionic compounds, such as salts, within the

growth medium is necessary to support microbial meta-

bolism. However, unlike routine laboratory cultivation in

defined medium, the use of biomass feedstocks can result

in the presence of ionic salts at levels capable of inhibiting

growth. This inhibition is realized due to an increase in

osmotic pressure, which places stress upon the host as it

attempts to maintain its membrane integrity and metabolic

activity levels (Wadskog and Adler 2003). S. cerevisiae has

been demonstrated to tolerate up to 1.5 M concentrations

of sodium chloride (Maiorella et al. 1984), and has been

observed to increase ethanol output in response to moder-

ate increases in salt concentrations, likely due to an

increase in ATP demand resulting from up regulated

plasma membrane transport (Jönsson et al. 2013). Cellu-

lolytic thermophillic bacteria, as well as E. coli, have

routinely demonstrated product inhibition in the presence

of organic acids and salts (Lynd et al. 2005), and control-

ling their presence within the growth medium can greatly

increase product output (Ingram et al. 1998).

Potentially inhibitory metabolic products

In addition to the exogenously applied and biomass derived

inhibitory compounds discussed above, self-produced

metabolic products can also negatively impact ethanol-

producing microorganisms under relevant fermentation

conditions. The two primary deleterious metabolic prod-

ucts encountered during this process are the carboxylic acid

acetate and the process target product, ethanol. As natural

metabolic products, acetate and ethanol are normally not

toxic to host cells under normal growth conditions, how-

ever, once ethanol production has been shifted beyond the

scale of the host’s natural requirements, the overproduction

of these components necessary to meet artificially inflated

industrial targets can result in accumulation concentrations

at scales for which cells have not developed a means of

efficient processing.

Acetate

Acetate is the primary carboxylic acid generated during

lignocellulosic hydrolysis (Taylor et al. 2012), but is also

crucial to normal cellular development during the routine

synthesis of ATP, a process that is especially important in

fermentive bacteria (Papoutsakis and Meyer 1985). Under

the fermentation conditions employed for industrial scale

ethanol production, this process can be inhibited or over-

whelmed, and acetate can begin to accumulate at greater

concentrations than can be efficiently processed by the

cells. When this occurs, the physical properties of acetate

will cause it to impart negative cellular effects similar to

those manifested through exposure to any of the previously

detailed acidic compounds. Furthermore, the cumulative

effects of acetate liberation and endogenous production can

also conspire to jointly inhibit product synthesis. As acetate

is naturally produced within the cell, the host’s metabolism

will seek to reduce its intracellular presence in order to

avoid the negative effects of transmembrane pH potential

disruption, turgor pressure alteration, and macromolecule

synthesis inhibition. However, as increasing concentrations

of acetate are then introduced into the medium following

liberation from biomass, the environmental pH will

undergo a corresponding decrease, resulting in corre-

sponding alterations to production strain metabolism.

These effects have been well detailed through observation

of solventogenic and non-solventogenic Clostridia species,

which have been shown to induce solvent production or

cease metabolic activity upon acetate-mediated pH chan-

ges, respectively (Nicolaou et al. 2010).

Ethanol

Ethanol represents an interesting production target due to

the fact that it is inherently cytotoxic to all microorganisms

at high concentrations. However, as the desired fermenta-

tion product, there is significant human-mediated evolu-

tionary pressure to continuously increase the amount that

can be tolerated in order to increase production efficiency

and reduce the associated costs of production. These
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seemingly opposed goals therefore require that only

organisms with naturally high ethanol tolerances be

employed for these procedures, or that ethanol tolerance be

engineered into the production host via genetic means.

Understanding the diverse mechanisms underlying etha-

nol’s toxicity is therefore key to achieving the latter of

these approaches.

Regardless of the host employed, ethanol’s primary

toxicological mechanism is imparted through detrimental

increases in membrane fluidity, which leads to increased

permeability, altered membrane gradients, disordering of

membrane associated proteins, and changes in cellular

osmolality. In addition to this general mechanism, ethanol

has also been demonstrated to impart targeted effects in

several key fermentation hosts. Various studies in S.

cerevisiae have demonstrated that ethanol also alters vac-

uole morphology (Meaden et al. 1999), induces heat shock

protein synthesis, which leads to corresponding reductions

in RNA and protein synthesis activity (Hu et al. 2007), and

leads directly to protein denaturation (Hallsworth et al.

1998). Similar studies in E. coli have served to further

elucidate the potential underlying causes for these effects,

demonstrating that protein synthesis inhibition may be due

to ethanol-induced ribosomal stalling at non-start

methionine codons, while existing proteins may be inacti-

vated through solvent exposure of their hydrophobic

regions following direct interaction, leading to miss-fold-

ing and resulting in abnormal function (Bull and Breese

1978; Haft et al., 2014). Beyond the classical S. cerevisiae

and E. coli hosts, these same targeted protein interactions

may also apply to the more recently employed Clostridium-

based production hosts, which have shown similar mem-

brane and proteomic effects when exposed to ethanol as

well (Zhu et al. 2013).

Underlying cellular detoxification mechanisms

To mitigate the cytotoxic effects encountered during

bioethanol fermentation, cells have developed several pri-

mary strategies for compound detoxification or avoidance,

or for the maintenance of growth and metabolism under the

suboptimal conditions encountered during compound

exposure. While recent research has made it clear that

individual organisms may respond with unique approaches

(Dunlop 2011), several general responses have been iden-

tified including the enactment of general stress response

pathways, modification of membrane component compo-

sition, direct chemical efflux, metabolic conversion, and

the alteration of transcriptional and translational expres-

sion. By eliciting one or more of these general pathways,

the production host is able to increase its tolerance to the

cytotoxic compounds discussed above and allow for the

attainment of higher production titers if ethanol synthesis

can be maintained under the energetic burden of the

applied response pathway (Nicolaou et al. 2010).

General stress response pathway activation

General stress response pathways represent a catchall

method for dealing with adverse environmental conditions

such as heat shock, cold shock, or solvent exposure. As

such, the enactment of these pathways following toxico-

logical challenge has been widely observed across the

common bioethanol production hosts (Nicolaou et al.

2010). In yeast, ethanol-initiated activation of general

stress response pathways has been observed to closely

parallel heat shock-induced pathway expression (Piper

1995), although many organisms share common stress

response strategies, so these results may well be applicable

in prokaryotic species as well. The enactment of this

response profile centers primarily on the employment of

transcriptional regulators and chaperone proteins. Tran-

scriptional regulators, such as RpoS in E. coli (Lombardo

et al. 2004), or Hsf1 in S. cerevisiae (Ding et al. 2009)

serve as a means for quickly up- or down-regulating large

numbers of genes in order to enact changes that maximize

protein stability, maintain key metabolic activities, enable

DNA repair, and support physiological maintenance. Of

these activities, the one that plays the most well charac-

terized role during the bioethanol fermentation process is

that of maximizing protein stability. This task is mediated

through the expression of chaperone proteins. Under nor-

mal growth conditions, these proteins aid in the assembly

of nascent peptides, however, during times of stress they

are re-purposed to re-fold damaged proteins in order to

prevent errant activity or the loss of crucial enzymatic

functions. Several studies have demonstrated that the up-

regulation of these chaperones, such as GroESL and Hsp33

in prokaryotes such as E. coli and Clostridium species

(Lund 2009; Tomas et al. 2003) and Hsp30 in S. cerevisiae

(Seymour and Piper, 1999), can significantly improve

ethanol tolerance by securing protein function within the

cells and permitting continued cellular metabolic activity.

Alterations to membrane composition

The cellular membrane represents the first line of defense

against cytotoxicity. It must remain capable of providing

an effective barrier to prevent the entry of cytotoxic

compounds, but is constrained by an absolute requirement

to maintain nutrient uptake and electrical gradient poten-

tials at a rate capable of supporting cellular survival. The

traditional production hosts E. coli and S. cerevisiae both

display similar membrane modifications under ethanol

exposure, with each increasing the incorporation of
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unsaturated fatty acids to maintain the function of their

membrane associated protein machinery (Beaven et al.

1982; Ingram 1976). Other production hosts, such as

Clostridium species, take an opposing approach and

increase the incorporation of saturated fatty acids, longer

chain fatty acids, or plasmalogens, as this allows them to

increase rigidity and combat the increased membrane flu-

idity imparted by ethanol exposure (Timmons et al. 2009;

Weber and de Bont 1996). With continued exposure, these

changes can even become fixed within the membrane,

further demonstrating their utility for providing a selective

growth advantage during ethanol exposure (Isken and de

Bont 1998). Beyond these changes to membrane compo-

sition, there is also evidence suggesting that integral

membrane protein expression patterns can be altered fol-

lowing ethanol exposure, with up-regulated expression of

the TolC protein in the E. coli outer membrane, for

example, having been shown to increase solvent tolerance

(Aono et al. 1998). Similarly, omics-based approaches

have demonstrated evidence indicating yeast may alter

their cell wall composition in response to solvent exposure

as well (Zhao and Bai 2009).

Direct chemical efflux

Perhaps the most basic route for preventing compound

cytotoxicity is simply the removal of the chemical from the

cell so that it cannot impart its negative effects. This

approach is accomplished through the action of efflux

pumps. These pumps are multi-protein complexes that

consume energy, often in the form of ATP, to move their

target compound against its diffusion gradient and out of

the cell. These pumps have been best characterized for

their role in preventing ethanol fermentation-associated

cytotoxicity in yeasts, where the ATP binding cassette

pump Pdr12p has been shown to remove acidic compounds

from the cell in order to prevent the loss of proton motive

force and to aid in the maintenance of physiological turgor

pressure (Hazelwood et al. 2006, Holyoak et al. 1999).

Similarly, but although not as well characterized, E. coli

has been suggested to utilize the MdfA efflux pump to

maintain its intracellular pH during fermentation (Krulwich

et al. 2005), although at this time there has been no work to

indicate that any known efflux pump can confer increased

tolerance to ethanol itself (Ankarloo et al. 2010).

Metabolic conversion to less toxic species

Compounds that cannot be directly removed from the cell

may also be detoxified via the host’s metabolism. When

this occurs, the toxic compound is processed into a non-

toxic or less toxic form that can then either be further

processed by additional metabolic reactions or excreted in

its modified form. This strategy is a common approach for

mitigating the toxicity of furan compounds, which are

converted to their less toxic alcohol forms via various

furfural reductases/alcohol dehydrogenases (Clarkson et al.

2014; Gutierrez et al. 2002; Gutierrez et al. 2006; Palmq-

vist and Hahn-Hägerdal 2000), and for phenolic com-

pounds, including cinnamic, p-coumaric, and frolic acids,

which can be similarly detoxified via phenylacrylic acid

decarboxylase (Clausen et al. 1994; Goodey and Tubb

1982; Mukai et al. 2010). Furthermore, these detoxification

enzymes appear to be widespread within solvent exposed

organisms. Expression of a Sphingomonas sp

14DN61 genomic library in E. coli identified an aldehyde

dehydrogenase (PhnN) capable of converting vanillin,

another toxic aldehyde found in lignocellulosic hydro-

lysates, to its less toxic carboxylic acid, vanillate, and a

homologous vanillin dehydrogenase (ligV) from S. pauci-

mobilis SYK-6 has also been shown to be essential for E.

coli growth on vanillin (Peng et al. 2005).

Alterations in gene expression dynamics

In addition to the transcriptional changes imparted through

general stress response activation, there is mounting evi-

dence indicating that ethanol production hosts are similarly

capable of altering their gene expression dynamics in

response to prolonged growth under ethanol fermentation

conditions, such as those that would be encountered during

strain development. This evidence stems from a series of

investigations that compared ethanol-adapted strains with

their non-adapted counterparts. A comparison of ethanol-

producing E. coli has demonstrated that, in response to

ethanol stress, over 5 % of all genes demonstrate signifi-

cantly altered transcriptional levels (Gonzalez et al. 2003).

As anticipated, many of these genes were implicated in

general stress response regulation or membrane synthesis,

however, several other gene categories such as glycine and

betaine metabolism were identified as well, with the

hypothesis that these components are likely involved in the

mitigation of osmotic stress (Wood et al. 2001). Targeted

engineering strategies have also been employed in E. coli

to demonstrate the utility of non-stress response gene

transcriptional alteration for improved ethanol tolerance. A

recent approach that modified the global transcription

factor cAMP receptor protein to increase tolerance

revealed that, in addition to general stress response genes,

the resulting ethanol-tolerant strains had also accumulated

transcriptional changes in both central intermediary meta-

bolism and iron transport as well (Chong et al. 2013).

Similar approaches have been taken in S. cerevisiae,

where a global gene analysis following ethanol exposure

revealed that 6.3 % of all genes transcriptional levels were

altered as a result of the exposure, with an almost equal
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number of up- and down-regulated transcripts (Alexandre

et al. 2001). While just over half of all of the genes dis-

playing transcriptional changes were involved in general

stress responses, the remaining genes represented processes

such as ionic homeostasis, trehalose synthesis, antioxidant

defense, and energy metabolism, providing ideal targets for

downstream targeted engineering approaches. Other pro-

duction hosts, such as Clostridium species, also present

significant alterations to gene expression. While the

majority of work with these species has highlighted func-

tional expression changes such as nutrient sensing and

cellulosome synthesis (Akinosho et al. 2014), additional

studies demonstrate that these expression dynamics can

influence energy and redox metabolism as well (Linville

et al. 2013; Wilson et al. 2013).

Methods for mitigating toxicity during bioethanol
production

A number of comprehensive reviews have detailed toler-

ance and stress responses to solvents and lignocellulosic

hydrolysates in S. cerevisiae, E. coli, P. putida, and C.

acetobutylicum (Almeida et al. 2007; Mills et al. 2009;

Nicolaou et al. 2010; Ramos et al. 2002; Sardessai and

Bhosle 2002), however, there has been less emphasis

placed on detailing the specific mechanisms employed to

mitigate the toxicological challenges encountered by

hemicellulolytic and thermophilic microorganisms. Given

the recent advances that have been made in using these

organisms as hosts for bioethanol production, it is impor-

tant to consider the potential evolutionary and genetic

engineering strategies that have been enacted to mitigate

ethanol and lignocellulosic hydrolysate toxicity in repre-

sentatives of these species such as C. thermocellum and

other Clostridia, and to parallel these findings with those of

more intensively studied organisms. Using this approach,

valuable insights can be obtained towards understanding

both the general and organism specific strategies for

overcoming cytotoxicity during bioethanol production.

Methods for identifying genomic engineering targets

Tolerance to ethanol and other toxic byproducts resulting

from lignocellulosic hydrolysis is a complex, multigenic,

and pleitropic process. Due to this complexity, the most

effective strategy for selecting stains that are tolerant to, or

thrive in, the presence of high ethanol or other toxic

chemical titers has been through strain evolution. However

it is important to note that tolerance (and metabolism),

versus growth, as well as ethanol production capabilities,

may have additional and unforeseen implications on

downstream bioprocesses that need to be considered as

well. Furthermore, ambiguity remains in separating inher-

ent stress responses in relation to the adaptive tolerance

afforded though the evolutionary adaption process. In

general, however, responses to chemicals that an organism

encounters routinely (e.g., ethanol as a metabolic bypro-

duct in S. cerevisiae or Z. mobilis) are considered to be

evolutionarily based, and likely require a complex pleio-

tropic signal transduction system to accommodate the

various changes responsible for their physiological adap-

tation (e.g., changes in membrane composition, stress

responses, energy metabolism, protective metabolite

metabolism). Nonetheless, there are several compelling

examples that demonstrate how single mutations or genetic

complementation can confer significant tolerance to toxins

as well.

Identification of targets known to classically influence

ethanol tolerance

Understanding the physiological responses and expression

profile dynamics of organisms exposed to ethanol can

elucidate potential targets for metabolic engineering

approaches aimed at synthetically increasing ethanol tol-

erance. For example, using information from studies

demonstrating that heat shock proteins are induced in

response to solvent stress in C. acetobutylicum (Terrac-

ciano and Kashket 1986), the groESL operon was targeted

for overexpression. This resulted in an 85 % decrease in

growth inhibition in response to butanol, and 33 % higher

butanol yields (Tomas et al. 2003). Subsequent studies on

this strain demonstrated that groESL overexpression also

increased the expression of other heat shock proteins as

well (Tomas et al. 2004). In addition, recent inverse

metabolic engineering approaches have also proven effec-

tive in increasing ethanol tolerance. Using this strategy,

Hong et al. (Hong et al. 2010) employed endogenous

genomic libraries to demonstrate that overexpression of

four genes (INO1, DOG1, HAL1, or a truncated version of

MSN2) was capable of increasing ethanol tolerance,

specific growth rate, titers, and productivities. A similar

approach was also employed to identify a xenobiotic

responsive element that confers butanol resistance in C.

acetobutylicum (Borden and Papoutsakis 2007).

Identification of targets using genome sequencing

Increasingly, whole genome sequencing is being employed

to aid in the identification of novel engineering targets.

When combined with enzyme analysis and complementa-

tion studies, this approach has proven to be a powerful

method for identifying targets that can significantly

enhance ethanol tolerance. In a recent study, an ethanol

tolerant C. thermocellum strain was sequenced and
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500 genetic differences were identified relative to the

parent strain (Brown et al. 2011). While these mutations

were randomly distributed among non-coding regions,

mutations within coding regions were most prevalent in

membrane protein encoding genes previously shown to be

differentially expressed (Williams et al. 2007), genes in

mutational hotspots encoding proteins involved in cellulose

degradation, genes for hypothetical proteins adjacent to

phage/transposase genes, and a particular hotspot consist-

ing of a putative 10 gene operon (Cthe_0422-Cthe_0431)

previously proposed to be involved in ethanol and H2

production. Interestingly, a bifunctional acetylaldehyde/

alcohol dehydrogenase (AdhE) within this hotspot was

shown to contain mutations that resulted in a change of

cofactor specificity from NADH to NADPH. Subsequent

introduction of this mutant allele in place of the wild type

gene in the wild type strain was shown to enhance ethanol

tolerance to the same level as the ethanol tolerant strain,

without affecting ethanol yields (Brown et al. 2011). This

not only demonstrates how genomic sequencing can serve

as a powerful tool for identifying metabolic engineering

targets, but also highlights how a single gene can enhance

ethanol tolerance by impacting redox and electron bal-

ancing to confer increased ethanol tolerance.

Identification of targets using integrated omics approaches

When applied in lieu of genomic approaches, which

identify changes influencing how proteins function, the

transcriptomic, proteomic, and metabolomic analysis of

wild type strains challenged with ethanol can provide

insight towards how the timing and coordination of gene

expression and pathway activation can be employed to

mitigate toxicity. However, when applied in tandem with

genome re-sequencing of strains with increased ethanol

tolerance, these approaches can also help to differentiate

between inherent adaptation mechanisms and evolutionary-

based mechanisms. This has been exemplified in recent

work investigating how C. thermocellum strains can adapt

to ethanol stress. Proteomic membrane profiling in an

ethanol tolerant C. thermocellum determined that 73 % of

all membrane proteins, including those involved in carbo-

hydrate transport and energy metabolism, were detected at

lower levels relative to wild type strains (Williams et al.

2007). Additional work by Yang et al. (2012) employed an

integrated transcriptomic, metabolomic, and proteomic

approach to assess the physiological and regulatory

responses of wild type cells challenged with ethanol in

continuous cultures. Their analysis revealed that observed

reductions in growth following ethanol stress correlated

with inhibition of glycolysis and pyruvate catabolism, and

the buildup of cellobiose and glycolytic intermediates.

These results corroborated previously published results

showing that ethanol addition impeded glycolysis and led

to intracellular accumulation of glucose-6-phosphate and

fructose-6-phosphate (Herrero et al. 1985a), suggesting that

decreased ATP availability due to ethanol-induced H?

membrane permeability was the primary cause of growth

inhibition. Furthermore, an observed differential expres-

sion of hydrogenases and an RNF-like NADH:ferredoxin

oxidoreductase suggested that these enzymes may also play

a role in rebalancing the cellular redox state in response to

ethanol stress, providing several potential targets for

downstream metabolic engineering efforts aimed at

increasing ethanol tolerance.

Common methods for genetically engineering

ethanol tolerance

Natural and directed strain evolution

The natural evolution strategy for selecting mutant strains

with elevated ethanol tolerance involves exposing a

microorganism to increasing concentrations of ethanol and

repeatedly selecting for the fastest-growing (or surviving)

strains, followed by the purification of single-colony lin-

eages from each successive treatment. This approachmay be

performed either by using a serial transfer approach that

selects for improved-growth phenotypes in the presence of

ethanol through sequential batch culture inoculations (Her-

rero and Gomez 1980; Shao et al. 2011; Williams et al.

2007), by progressively increasing ethanol concentrations in

continuous cultures (Joachimsthal et al. 1998), or through

growth on gradient agar plates and subsequent selection of

the largest colonies. The directed evolution approach expe-

dites this process by treating seed cultures with mutagens

such as N-methyl N-nitro N-nitrosoguanidine or ultraviolet

light, via whole genome shuffling, or through the expression

of deletion libraries (for a review of this approach, see

Nicolaou et al. 2010). For both methods, genomic re-se-

quencing of the isolated tolerant mutants is employed fol-

lowing selection to provide insight towards the mechanisms

that have evolved to improve tolerance (Brown et al. 2011;

Linville et al. 2013).

Overexpression of endogenous or exogenous tolerance

genes

Following the identification of genes endowing mutant

strains with increased ethanol tolerance, customized strains

can be specifically engineered that overexpress either

native or exogenous versions of these genes in order to

endow the strain with an improved tolerance phenotype

without the incorporation of additional, potentially delete-

rious genetic alterations. The effectiveness of this strategy

has been demonstrated on multiple occasions, such as
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through overexpression of the native NADPH-dependent

alcohol dehydrogenase ADH6p in S. cerevisiae, which

results in increased HMF tolerance (Petersson et al. 2006).

Similarly, increasing flux through the pentose phosphate

pathway by overexpressing glucose-6-phosphate dehydro-

genase has been shown to increase NADPH availability for

furfural reductases/alcohol dehydrogenases and further

improve furfural tolerance (Gutierrez et al. 2006). In some

cases, the overexpression strategy can also be used to

increase production rates as well, as has been demonstrated

with PAD1 overexpression, which improved ethanol pro-

duction rates by 29 % on spruce dilute acid hydrolysate

(Larsson et al. 2001), or heterologous expression of the

Trametes versicolor laccase gene, which was used to

convert phenolic compounds to radicals that, in turn,

polymerized to form high-molecular mass products (Lars-

son et al. 2001).

Reduction or elimination of genes producing deleterious

byproducts

Although less common, reductive genomic approaches that

eliminate native genetic architecture can also be employed

to increase tolerance and improve ethanol output. In these

strategies, genes that are not required for survival, but have

been demonstrated to produce potentially cytotoxic meta-

bolic intermediates or byproducts are removed from the

genome to prevent deleterious effects on cellular growth or

metabolism. Similarly, genes that permit the shuttling of

metabolic intermediates into pathways that compete with

ethanol production can also be eliminated in order to dis-

able these pathways and more effectively route flux

towards ethanol production. An example of this reductive

approach can be seen in the silencing of the yqhD and dkgA

NADPH-dependent oxidoreductases of E. coli, which

increases tolerance to HMF exposure (Miller et al. 2009).

Common engineering controls for mitigating toxicity

A number of non-biological engineering control methods

can be employed to minimize toxicity during the bioetha-

nol production process. These include enzymatic treat-

ments, chemical treatments, liquid–liquid or liquid–solid

extraction procedures, and heating and vaporization

applications (Jönsson et al. 2013). In addition, supple-

mentation of zinc in continuous yeast cultures has been

demonstrated to increase trehalose tolerance and signifi-

cantly improve ethanol tolerance (Zhao et al. 2009),

demonstrating that medium manipulation may also be used

to enhance ethanol tolerance. From a workflow develop-

ment perspective, increased inoculum sizes, the optimiza-

tion of fermenter pH, recirculation or immobilization of

cells, and the use of lower substrate dilution rates have all

also been demonstrated to result in increased ethanol pro-

ductivity and can be employed as well, however, these

consideration must be made such that they remain com-

patible with the chosen bioreactor design to ensure efficient

production rates (Brethauer and Wyman 2010; Palmqvist

and Haggett 1997).

Mitigating the ecological impacts of bioethanol
production

Toxicological compounds in bioethanol production

waste streams

Between 5 and 10 % of the biomass entering an ethanol

biorefinery will end up in the waste stream. While this

includes pretreatment byproducts, fermentation byproducts,

cell mass generated during fermentation, and any uncon-

verted biomass polymers and oligomers, the primary toxic

compounds found in these wastewater streams are the same

phenolic, furan aldehyde, and organic acid compounds that

presented cytotoxicological challenges during the fermen-

tation process. The presence of these compounds in thewaste

streammeans that it cannot be directly recycled until they are

effectively detoxified to the point where they do not pose an

environmental risk. Of these compounds, acetate is partic-

ularly concerning as a bioethanol production wastewater

component because, while it is not toxic at low concentra-

tions, it can add to the biological oxygen demand (BOD) of

wastewater streams. In general, the concentration of acetate

in biorefinery wastewater resulting from conversion of corn

stover to ethanol is in the range of 6–10 g/l (Humbir et al.

2011), however, these levels can result in toxicity due to their

potential for oxygen deprivationwithin natural water bodies.

Therefore, the removal of acetate is essential for managing

waste stream toxicity. A number of technologies have been

investigated for this process, including ion exchange and

membrane-based technologies (Nilvebrant et al. 2001),

polymeric adsorption (Weil et al. 2002), precipitation using

chemicals such as Ca(OH)2 (overliming) (Martinez et al.

2000), and solvent extraction (Palmqvist andHahn-Hägerdal

2000). However, these approaches are only partially effec-

tive and add considerable costs to the fermentation process,

while still leaving some of the inhibitors in the process

streams. Any attempt to recycle and reuse process water

using these processes is therefore significantly limited due to

the potential for cytotoxic build-up.

The use of microbial fuel cells for mitigating

bioethanol production ecotoxicology

Detoxification of bioethanol waste streams using com-

pound degradation via aerobic digestion has served as the
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traditional method for wastewater treatment. However,

owing to its high energy consumption, it will likely be

limited in future systems that strive to increase energy

efficiency. In light of this consideration, microbial fuel

cells (MFCs) and microbial electrolysis cells (MECs) have

emerged as potential alternatives for the treatment of

wastewater streams because they can produce energy while

simultaneously removing toxic compounds to allow for a

net reduction in the energy input consumed during the

treatment process (Borole et al. 2009; Borole 2011; Borole

et al. 2013). Microbial fuel cell-based removal of acetate

has previously been reported (Lee et al. 2003; Liu et al.

2005; Rabaey et al. 2005) and has demonstrated an ability

to produce electricity using microbial consortia developed

specifically for biorefinery wastewaters containing acetate

and other typical bioethanol production byproducts (Borole

et al. 2009, 2013). Specifically, the electrogenic conversion

of furans and phenolic molecules has emerged as a key

application of this technology, with studies by Borole et al.

demonstrating the removal of acetate, furfural, HMF and

phenolic model compounds such as vanillic acid, 4-hy-

droxybenzaldehyde and 4-hydroxyacetophenone (Borole

et al. 2009).

In addition, when properly deployed, MECs can also

serve to improve the overall energy efficiency of ethanol

biorefineries by generating hydrogen, which can be utilized

in the biorefinery for improving fuel yield or as a separate

product. The potential volume of hydrogen that can be

produced using biorefinery wastewaters is estimated to be

as high as 7200 m3/h from a typical biorefinery processing

2000 ton per day of biomass into ethanol via fermentation.

Including other types of biorefineries, the range of hydro-

gen production is estimated to be 750 to 8900 m3/h. Thus,

the MFC/MEC technology is beneficial not only from the

standpoint of toxicity reduction, but also for generating

value from the wastes for the biorefinery (Borole and

Mielenz 2011). There are, however, several important

points that must be considered when applying MFCs for

removal of the toxic compounds from bioethanol wastew-

ater streams, such as the percent removal of fermentation

inhibitors and the degree of mineralization incurred, the

ability of the MFC to handle the concentration of the

inhibitors presented, the performance of the MFC in the

presence of mixed-substrate feeds (i.e., when multiple

inhibitors are presented simultaneously), the performance

stability of the MFC (including power output and the

identification of parameters requiring control), and the total

power generation realized through MFC implementation.

Toxicant removal capabilities of microbial fuel cells

The concentration of acetate and other cytotoxic com-

pounds in bioethanol production wastewater, which can

range from a few mM to 20 mM or more following product

separation (Ade et al. 2002; Klinke et al. 2004), is an

important factor affecting their conversion. The effects of

furfural on electricity production using MFCs has been

studied at concentrations ranging from 0.1 to 2 g/l, with no

negative effects on current output observed at any surveyed

level. Energy recovery from furfural and other typical

wastewater components such as HMF, vanillic acid,

4-hydroxybenzaldehyde, and 4-hydroxyacetophenone was

reported to range from 60 to 69 %. These values are

promising, and indicate substantial conversion of the

compounds in the MFC bioanode. Further studies demon-

strated that the bioanode was capable of sustaining the

same conversion rate above a particular threshold con-

centration of the individual compounds, with maximum

power densities of 3490 mW/m2 (336 W/m3) for furfural,

2510 mW/m2 (238 w/m3) for HMF and 630 mW/m2

(62 W/m3) for 4-hydroxybenzaldehyde (Borole et al.

2009).

Simultaneous detoxification of bioethanol waste stream

components

The ability of the MFC bioanode to handle mixed-substrate

waste streams has also been reported using a corn stover-

derived process stream, where it was demonstrated to

remove of all the above-referenced model compounds, as

well as many of the phenolic compounds commonly gen-

erated during bioethanol production (Borole et al. 2013).

During these studies, the effect of compound concentration

was also examined, which revealed excessive growth of

biofilms at high concentrations leading to mass transfer

limitations. This was potentially due to the presence of

residual sugars in the stream, which led to rapid biofilm

growth even in the presence of the toxic compounds. The

ability of the resultant biofilms to form a protective

exopolysaccharide layer preventing exposure to high con-

centrations of the toxic compounds may be a potential

explanation for the observed effects, however, further work

will be necessary to fully support this hypothesis.

Performance stability under toxicological challenge

Evaluating the stability of MFCs will be key to determining

if they can serve as long term solutions to the ecotoxico-

logical challenges presented by bioethanol production. In a

recent study by Borole et al., MFC performance was

evaluated under challenge from model waste stream com-

pounds for a period of 10 months. With a ferricyanide

cathode being used for the last 4 months of operation, a

power density of 3700 mW/m2 was reported when furfural

was employed as the substrate (Borole and Mielenz 2011).

This output and longevity is promising for the future use of
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MFCs in detoxifying the waste streams resulting from

bioethanol production, which will serve as a key factor in

both their production economics and their adoption by the

general public.

Future directions within the field

Significant strides have been made on all levels of the

bioethanol production process, however, issues still remain

that must be addressed before the process can be performed

at industrial scales with minimal ecological impacts. At the

small scale, efforts must be made to further engineer the

employed microorganisms to produce ethanol with mini-

mal side products so as to both maximize efficiency and

minimize environmental risk. Furthermore, work must

continue to seek out or develop hosts that can more effi-

ciently access cellulosic materials and convert them into

products with minimal up stream pretreatment require-

ments. This will serve not only to limit the costs of bioe-

thanol production, but will also limit the use of acids and

other hazardous chemicals that must then be processed as

wastes, and will minimize the total power consumption of

the process. At the large scale, work must continue to

harness what is currently considered waste from the bioe-

thanol production process, and leverage it for further

generation of energy or to better facilitate detoxification.

As this work continues, the bioethanol production process

as a whole is steadily moving towards a point where effi-

ciency and ecotoxicological impact minimization will

intersect to allow the long-term commercial survival of this

industry.

Conclusions

Despite the abundance of cyto- and ecotoxicological con-

cerns that result from the bioethanol production process,

significant achievements have been made in reducing or

overcoming their impacts. The advent of new genetic and

metabolic tools and the discovery of new organisms that

can potentially serve as bioethanol production hosts has led

to significant advancements in both production capacity

and economy. Therefore, as this industry continues to

move forward it is important to fully understand both the

inherent toxicological challenges and the methods that

have been employed to overcome them. By leveraging this

knowledge and applying it in combination with the new

biotechnological and engineering strategies that are shap-

ing the future of the bioethanol production field, it may be

possible to move forward in a way that maximizes effi-

ciency while minimizing the greater environmental impact.
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