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SUMMARY

High-density hydrogen storage in the form of renewable carbohydrate becomes possible because cell-free synthetic
enzymatic pathway biotransformation (SyPaB) can 100% selectively convert carbohydrate and water to high-purity
hydrogen and carbon dioxide under modest reaction conditions (below water boiling temperature and atmospheric pressure).
Gravimetric density of carbohydrate (polysaccharide) is 14.8%H2mass, where water can be recycled from polymer electrolyte
membrane fuel cells or 8.33%H2mass based on the water/carbohydrate slurry; volumetric density of carbohydrate is>100kg
of H2/m

3. Renewable carbohydrate would be more advantageous over methanol according to numerous criteria: substrate cost
based on energy content (cost per gigajoule), energy conversion efficiency, catalyst cost and availability, sustainability, safety,
toxicity, and applications. Huge potential markets of SyPaB from high-end applications (e.g., biohydrogenation for synthesis
of chiral compounds and sugar batteries) to low-end applications (e.g., local satellite hydrogen generation stations, distributed
electricity generators, and sugar fuel cell vehicles) would be motivation to solve the remaining obstacles soon. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mobility usually represents civilization level [1–3]. The
utilization of liquid fuels along with internal combustion
engines (ICEs) has greatly enhanced the mobility of human
beings because liquid fuels have high energy storage
densities, they can be easily transported and conveniently
stored, and ICEs have high power-to-weight ratio (e.g., watt
output/gram engine) and low production costs based on cost-
per-watt output [3,4]. But concerns of depleting crude oil,
soaring prices of crude oil, climate change associated with
net carbon dioxide emissions, uneven resource distribution,
wealth transfer, national energy security, and air pollution
are driving to seek for clean and sustainable alternative
transportation fuels [5,6].
Copyright © 2012 John Wiley & Sons, Ltd.
The next transportation revolution would mainly
occur as a transition from ICEs to the hydrogen/electricity
systems [6–8]. Because electricity storage densities in the
batteries (e.g., ~0.14MJ/kg of lead acid battery,
~0.46MJ/kg of lithium battery) [9,10] are far less than
those of available hydrogen means (e.g., 5.7MJ/kg of
4% H2 storage container), a majority of future transporta-
tion vehicles would be based on the hydrogen/fuel cell/
motor systems [8,11,12]. In addition to energy storage
density, the underlying premise of the hydrogen economy
is that hydrogen fuel cells have much higher energy effi-
ciencies (~50–70%) than internal combustion engines
(~20–40%) that are restricted by the second law of
thermodynamics. Thus, this transition from heat engines
to fuel cells would decrease consumption of primary
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energy by approximately twofold and reduce air pollu-
tion generated from ICEs.

The largest obstacle to the hydrogen economy is the safe,
efficient, and viable storage of hydrogen [8,13]. In general,
hydrogen can be stored (i) in high-pressure gas cylinders;
(ii) as liquid hydrogen in cryogenic tanks at 21K; and
(iii) in solid forms, including adsorption on large specific
surface area solid materials (e.g., nanomaterials, metal
organic frameworks), chemical or light metal hydrides, or
by the reaction of light metals or hydrides and water (e.g.,
NaAlH4, LiAlH4, AlH3, LiBH4, Mg(BH4)2, destabilized
borohydrides, and amide/imide systems) [13–15]. As shown
in Figure 1, most of them are far from meeting the DOE’s
ultimate hydrogen storage goals—8%H2mass and 75kg
H2/m

3 container—which have been decreased from the
original goals (9%H2mass in the year 2015) [16]. Some
light metals and some chemical hydrides may have high
gravimetric and volumetric capacities meeting the DOE’s
new targets. For example, ammonia borane (H3NBH3) can
release ~18wt%H2 by the use of a Ni catalyst at 60�C
[17]. But its synthesis requires input of ammonia [18,19],
which is at least 20% more costly than hydrogen based on
energy content (cost per gigajoule) because ammonia is
synthesized from nitrogen and hydrogen [8]. Consequently,
ammonia borane is a relatively costly hydrogen carrier.
Similarly, some light metals (such as alumina) can release
hydrogen when they react with water in the presence of
some catalysts, but these metals have to be regenerated by
electrolysis. Regeneration of light metals is energy intensive
[20]. As a result, light metals or chemical hydrides may not
be good as hydrogen carriers for passenger vehicles due to
high energy costs for their production or regeneration, as
compared with methanol or carbohydrate [8].

In order to dramatize and incentivize hydrogen research,
the H-Prize has been established to competitively award cash
prizes that will advance the commercial application of
hydrogen energy technologies [8,21]. The 2009–2011
H-Prize will be awarded in the area of storage materials in
mobile systems for light-duty vehicles. The basic require-
ments are (i) 7.5% reversible H2 mass at conditions between
Figure 1. The available hydrogen storage means and the DOE’s
updated ultimate goal of hydrogen storage.
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�40�C and +85�C and between 1.5 and 150 bars of H2

pressure; (ii) 70 kg of total releasable H2/m
3; (iii) charging

kinetics—greater than or equal to 0.0004 g of hydrogen per
gram of material per second at conditions between �40�C
and +85�C and between 1.5 and 150 bars of H2 pressure;
(iv) discharge kinetics—greater than or equal to 0.00002 g
of hydrogen per gram of material per second at conditions
between�40�C and +80�C and an outlet hydrogen pressure
of ⩾1.5 bar; and (v) a cycle life of 100 without a significant
loss of capacity [21].

An alternative is use of hydrogen carriers, such as
hydrocarbons, biodiesel, methanol, ethanol, ammonia, and
carbohydrate [8]. But end users must have an on-board
converter that can convert the hydrogen carrier to high-purity
hydrogen before entering polymer electrolyte membrane
(PEM) fuel cells. By considering the complexity, size, and
control of the hydrogen generation system and hydrogen
purification system, hydrocarbons, biodiesel, and ammonia
are not suitable in a small room of a passenger vehicle
equipped with PEM fuel cells [6]. Methanol has been
proposed as a future hydrogen carrier by Nobel PrizeWinner
GeorgeOlah [22], whereas carbohydrate was suggested to be
a future hydrogen carrier by us in 2007 [23] because of 100%
chemical selectivity mediated by cascade enzymes that can
implement the stoichiometric reaction as C6H10O5(aq) + 7
H2O(l)! 12H2(g) +6CO2(g) [23,24]. Therefore, gravimetric
density of carbohydrate (starch or cellulosic materials) is
14.8%H2mass where water can be recycled from PEM fuel
cells or 8.33%H2mass based on a carbohydrate/water slurry;
volumetric density of carbohydrate is>100 kg of H2/m

3 [8].
The possibility of carbohydrate as a hydrogen carrier

is due to a new technology—cell-free synthetic enzymatic
pathway biotransformation (SyPaB). SyPaB is the imple-
mentation of complicated biological reactions through
in vitro assembly of a number of enzymes and coenzymes
[2,25–27]. The basic idea of SyPaB is to surpass microor-
ganisms’ metabolisms and does not require other microbial
functions such as self-duplication, maintenance, and so on.
As compared with microbe-mediated fermentations, SyPaB
has obvious advantages, such as greater engineering
flexibility (i.e., neither cellular membrane nor gene regula-
tion), higher product yield, faster reaction rate (i.e., faster
mass transfer and higher biocatalyst concentration),
broader reaction conditions, easier process control, and so
on [2,25–27]. Because of this new technology, breaking
the Thauer limit for microbial biohydrogen fermentation
(i.e., 4 H2/glucose) comes true. Also, to our limited knowl-
edge, hydrogen is generated by using room-temperature
waste heat without a temperature gradient (i.e., a cool sink)
for the first time [23,24].

In this perspective article, we argued the possibility of
carbohydrate as a high-density hydrogen carrier, compared
hydrogen production on the basis of aqueous phase
reforming (APR) and SyPaB, analyzed the carbohydrate
economy and the methanol economy, and presented the
SyPaB roadmap toward the hydrogen economy based on re-
newable carbohydrate. Here we did not want to compare car-
bohydrate with other potential hydrogen storage compounds.
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2. HYDROGEN PRODUCTION FROM
CARBOHYDRATE

Hydrogen can be produced from biomass-derived carbohy-
drate by chemical catalysis featuring severe reaction condi-
tions and fast reaction rates (e.g., gasification, pyrolysis,
APR), biocatalysis featuring modest reaction conditions
and low energy input (e.g., dark fermentation), and their
combinations (e.g., ethanol fermentation followed by partial
oxygenation). Hydrogen production through chemical and
biological catalysis from carbohydrate has been reviewed
elsewhere [6,28–31]. All of previous chemical and biological
hydrogen-producing means based on carbohydrate except
SyPaB suffer from low hydrogen yields, far from its
theoretical yield (i.e., 12H2/glucose). Here we focused on
the comparison of two newly developed technologies—
APR and SyPaB (Table I).

APR is chemical reforming conducted in the liquid
phase (e.g., ~200�C–300�C and ~50–70 atm) mediated by
the catalysts below the critical point of water (647K and
218 atm). This process generates hydrogen without volatiliz-
ing water, which means major energy savings. Furthermore,
it occurs at temperatures and pressures where the water–gas
shift reaction is favorable so that it can generate hydrogen
with low amounts of CO2 in a single chemical reactor. At
low temperature, this process also minimizes undesirable
decomposition reactions [32]. In 2002, Dumesic and his
coworkers demonstrated that hydrogen can be produced
from biomass-derived carbohydrates at temperatures near
500K in a single reactor by using a platinum-based catalyst
[33]. One of the disadvantages is leaching and instability
of catalyst components into the aqueous phase. Although
APR process may be attractive to produce H2 from carbohy-
drate, hydrogen yields were low to date, owing to low
selectivity and formation of coke and by-products [34].

Biocatalysis mediated by microorganisms or isolated
enzymes has several advantages over chemical catalysis,
such as higher selectivity, lower energy input (e.g., higher
energy efficiency), and less costly bioreactor [35]. In nature,
Table I. Comparison of carbohydrate-to-hydrogen technologies:
aqueous phase reforming and synthetic enzymatic pathway

biotransformation.

Feature
Aqueous phase

reforming
Synthetic pathway
biotransformation

H2 yield (mol/mol) ~2–8 12
Energy efficiency 30–50% 122%
Product purity Low, purification

needed
High, no
purification

Reaction condition ~200�C–300�C,
~50–70 atm

~20�C-80�C,
~1 atm

Reactor cost High pressure Low pressure
Catalyst cost Modest Very high !

very low
Catalyst stability Modest ! high Low ! high
Reaction rate Very high Low ! high
anaerobic microorganisms can produce 4mol of hydrogen
and 2mol of acetate or 2mol of hydrogen and 1mol of
butyrate per mol of glucose through the mixed acid
pathway, called the Thauer limit [36]. In practice, natural
or genetically modified microorganisms produce hydrogen
yields lower than or close to this theoretical yield (i.e.,
4H2/glucose) [28,36–39].

In order to break the hydrogen production limit for
microorganisms, nearly 12mol of hydrogen has been
produced per glucose unit of starch or cellulosic materials
and water by SyPaB [23,24]. In these cell-free synthetic
pathways, a number of enzymes and coenzymes purified
from different sources (e.g., bacteria, yeasts, archaea, ani-
mals, and plants) are assembled in vitro for the implementa-
tion of complicated biological reactions. The pathways
contain five sub-modules: (i) polysaccharide or oligosaccha-
ride conversion to glucose-1-phosphate (g1p) catalyzed by
glucan phosphorylase, (ii) glucose-6-phosphate (g6p) gener-
ation from g1p catalyzed by phosphoglucomutase, (iii)
NADPH production catalyzed by two dehydrogenases of
the oxidative phase of the pentose phosphate pathway
(PPP), (iv) g6p regeneration from ribulose-5-phosphate cata-
lyzed by the four enzymes of the non-oxidative phase of PPP
and four enzyme of the glycolysis and gluconeogenesis
pathways, and (v) hydrogen generation from NADPH
catalyzed by hydrogenase (Figure 2a). The overall carbohy-
drate (starch or cellulosic materials)-to-hydrogen reaction is
shown as

C6H10O5 aqð Þ þ 7 H2O ðlÞ ! 12 H2 gð Þ þ 6 CO2 gð Þ

These reconstituted non-natural pathways split water by
using the energy in carbohydrate and (waste) heat from the
environment [23,24]. These processes are similar to catabo-
lism, where water rather than oxygen works as an oxidant
receiving electrons and generates hydrogen and carbon
dioxide [2], but have much higher energy conversion
efficiencies than any natural catabolism. These enzymatic
reactions are among rare entropy-driven chemical reactions
because two final products are gaseous under the experimen-
tal conditions (~1 atm and<100�C) [23,24]. Great increases
in the entropy from aqueous to gas phases enable these
positive-enthalpy reactions to occur.

We have demonstrated the feasibility of high-yield spon-
taneous generation of hydrogen from starch or cellulosic
materials and water in batch reactions (Fig. 2 b&c) [23,24].
Although the practical hydrogen yield is slightly lower than
the theoretic yield (i.e., 12H2/glucose equivalent) in batch
reactions, it is expected that 100% product yield is achiev-
able in a continuous reactor.

Although the current production cost of enzymatic
hydrogen by SyPaB is very high, it is expected to be
decreased as low as $1.50/kg of hydrogen or lower
[25–27]. This cost estimate is mainly based on three major
cost components—carbohydrate, enzymes, and coenzyme
(NADP+). Economic analysis suggests that the hydrogen
cost decreases rapidly with increasing total turn-over number
(TTN; mol product per mol enzyme) of the enzymes in
Int. J. Energy Res. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/er



Figure 2. The cell-free synthetic enzymatic pathway (SyPa) (a), high-yield generation of hydrogen from starch (b) [23] or soluble
cellodextrin (c) [24]. The enzymes are GNP, glucan phosphorylase; PGM, phosphoglucomutase; G6PDH, G-6-P dehydrogenase;
6PGDH, 6-phosphogluconate dehydrogenase; R5PI, phosphoribose isomerase; Ru5PE, ribulose 5-phosphate epimerase; TKL, transke-
tolase; TAL, transaldolase; TIM, triose phosphate isomerase; ALD, aldolase; FBP, fructose-1, 6-bisphosphatase; PGI, phosphoglucose
isomerase; and H2ase, hydrogenase. The metabolites and chemicals are g1p, glucose-1-phosphate; g6p, glucose-6-phosphate; 6pg,
6-phosphogluconate; ru5p, ribulose-5-phosphate; x5p, xylulose-5-phosphate; r5p, ribose-5-phosphate; s7p, sedoheptulose-7-
phosphate; g3p, glyceraldehyde-3-phosphate; e4p, erythrose-4-phosphate; dhap, dihydroxacetone phosphate; fdp, fructose-1,6-

bisphosphate; f6p, fructose-6-phosphate; and Pi, inorganic phosphate.
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SyPaB and then levels off when all enzymes, regardless of
their production costs, have total TTN values of more
than 107–8mol product/mol enzyme [26]. When all enzymes
have TTN values of 107 and each one has production costs of
~$40/kg, hydrogen production cost is anticipated to be
$2.00/kgH2. When TTN values of the enzymes are further
enhanced to 108 or 109, the ultimate cost of hydrogen would
be as low as $1.30/kgH2 [27]. Such hydrogen production
cost by SyPaB would be lower than those from natural gas
(e.g., $2.00–$2.70/kg of hydrogen) [23].

In general, it is very feasible to have stable bulk
enzymes with TTN values of more than 107 and the pro-
duction costs of ~$40/kg of enzyme (neither membrane
nor very complicated cellular enzymes). In our laboratory,
we have obtained several thermostable enzymes with
TTN values of more than 107, for example, Clostridium
thermocellum phosphoglucomutase [40], Thermotoga
maritima fructose-1,6-bisphosphatase [41], and T. maritima
6-phosphogluconate dehydrogenase [35]. In the literature, a
large number of industrial and laboratory enzymes have
TTN values of more than 107, including glucose isomerase.
We have found that free C. thermocellum phosphoglucose
isomerase (PGI) has relatively low TTN values but immo-
bilized PGI becomes ultra-stable (TTN> 1� 109) [42].
Recently, Zhong and his co-workers obtained another
recombinant thermoenzyme C–C bond forming transaldolase
from T. maritima with TTN values of more than 3� 107

[43].
Int. J. Energy Res. (2012) © 2012 John Wiley & Sons, Ltd.
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Numerous successful examples are available pertaining to
modification of the coenzyme preferences of redox enzymes
by rational design and directed evolution [44–46]. What is
more important is that labile natural coenzymes can be
replaced with low-cost and stable biomimetic coenzymes
[47–49]. Ryan et al. have successfully engineered cyto-
chrome P450 that can work on biomimetic cofactors better
than natural cofactors [48]. Recently, an ultra-thermostable
alcohol dehydrogenase has been modified to utilize small-
size biomimetic coenzyme by rational design [50]. Further-
more, it is found out that the small-size coenzyme enables
to improve electron transfer between the coenzyme and
redox enzyme (Scott Banta, personal communication).

The SyPaB is a typical integrative technology platform
based on the achievements of modern biotechnology during
the past five decades [25]. SyPaB, which originated from
cell-free ethanol (Nobel Prize Chemistry 1907), is evolving
to a low-cost and high-yield biomanufacturing technology
[51]. As partly discussed before and elsewhere [25,27],
numerous mature biotechnologies, such as bulk enzyme
production and purification, high-cell density fermentation,
enzyme immobilization, thermoenzyme discovery and
utilization, protein engineering through directed evolution,
rational design and their combination, and so on, make the
implementation of complicated reactors through synthetic
cascade pathways feasible [25]. The SyPaB technology has
successfully achieved some breakthroughs that neither
microbes nor chemical catalysis can implement before, such
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as production of nearly 12mol of hydrogen from carbohy-
drate and water [23,24], regeneration of ultra-high-yield
NAD(P)H based on carbohydrate and water [51], in-depth
oxidation of organic compounds to electrons in enzymatic
fuel cells [52,53], enzymatic conversion of ethanol and
CO2 to lactate [54], and so on. Although SyPaB is on its
early stage, its unique features, such as high product yield,
fast reaction rate, and easy process control, would allow it
to play more important roles in several important fields, such
as biofuel production and CO2 fixation.
3. THE CARBOHYDRATE ECONOMY
VERSUS THEMETHANOL ECONOMY

Here we propose the carbohydrate as a hydrogen carrier
rather than methanol, which is proposed by George Olah
[22], as shown in Figure 3. Carbohydrate is the most
abundant renewable bioresource. Each year approximately
100 billion tons of carbohydrate per year is synthesized by
plants [7,27]. Renewable carbohydrate is used as sources
for food (starch), feed (starch and cellulose), renewable
materials (e.g., paper, lumber, poly lactic acid), and liquid
biofuels (e.g., ethanol, butanol, and other advanced liquid
biofuels) [7,27]. It is expected that carbohydrate would
be a hydrogen carrier in the transport sector and utilization
of a small fraction of renewable annual carbohydrate
production (e.g., 5–10%) would be sufficient to nearly
replace transportation fuels made from crude oil [6,8,55].
Figure 3. Comparison of the carbohydrate economy (a) and the
methanol economy (b).
Now methanol is mainly synthesized from methane or
coal, especially in China [56]. Also, methanol is expected
to be produced from methane mediated by the enzymes
(e.g., monooxygenase) under ambient conditions in the
future [57–59]. In the long-term future, artificial photosyn-
thesis would utilize solar energy to fix CO2 to produce
methanol [60–62]. Now methanol is mainly converted to
formaldehyde, which can be used in making plastics,
plywood, explosive, paints, and other chemical derivatives,
such as dimethyl ether (DME) [22]. A large fraction of meth-
anol was used to produce methyl tert-butyl ether (MTBE)
as gasoline additive, but now MTBE has been replaced by
ethanol. Methanol may be used as liquid fuel directly but it
is corrosive, toxic, and has much lower energy density as
compared with ethanol and gasoline [2]. In China, DME
made from methanol is being used as home heating and
cooking. It also can be used as a diesel replacement fuel.
The energy content of methanol ($1.00/Gal of methanol) is
approximately $16.8/GJ, higher than that of carbohydrate
($12.9/GJ, $0.22/kg of carbohydrate) [2,8].

Electricity can be produced from methanol or carbohy-
drate through different fuel cell systems (Figure 4). The
scheme of direct methanol fuel cell (DMFC) is presented in
Figure 4a. Because DMFC has much lower power density
and requires higher loading of costly platinum as compared
with PEM fuel cell (PEMFC), it is well suited for portable
electronics, such as cellular phone and laptop, whose power
requirements are low. Meanwhile, costumers are willing to
pay high costs for better performance [63,64] because
DMFC has much higher energy density (megajoule electric-
ity per kilogram) and fuel refilling is faster, compared with
rechargeable lithium batteries.

Carbohydrate can be converted to electricity through
two pathways: enzymatic fuel cell (Figure 4b) and a hybrid
of sugar-to-hydrogen and PEMFCs (Figure 4c). The former
would have low power densities (e.g., 1–10mW/cm2

anode), so that it would be good for portable electronics,
competing with DMFC or rechargeable batteries in the
future. In contrast, integrated SyPaB biotransformer
and PEMFCs featuring 500–1000mW/cm2 would be
good for distributed electricity generators and light-duty
vehicles [8].

Enzymatic fuel cells (EFC) are biologically inspired fuel
cells where enzymes rather than chemical catalysts oxidize
chemical compounds to electrical energy by mimicking
biological metabolisms [65,66]. Enzymes are used to
catalytically oxidize the fuels (e.g., sugars, alcohols, or or-
ganic acids) at the anode and reduce oxygen at the cathode
(Figure 4b). Several companies (e.g., Sony and Nokia) are
developing EFCs [67]. Sony Co. has increased the power
density of enzymatic fuel cell to 5–10mW/cm2 anode
surface and prolonged the lifetime of enzymes to more than
3months, but such designs only extract two electrons in
glucose (i.e., 1/12 of the theoretical maximum yield)
[67,68]. Complete conversion of the chemicals to electricity
would have fourfold benefits: high energy utilization
efficiency, high energy storage density, low product inhibi-
tion, and high power density [25,66,69]. For fuel utilization
Int. J. Energy Res. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/er



Figure 4. Comparison of direct methanol fuel cell (a), enzymatic
biofuel cell (b), and a hybrid of biotransformer and PEM fuel cell (c).
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efficiency to be increased, enzyme cascades are employed.
Three cascade redox enzymes have been employed in an
anode for the complete oxidization of one-carbon methanol
to CO2 [70]. Similarly, two-carbon ethanol has been deeply
oxidized for generating more electrons by using an 11-
enzyme pathway [53]. Three-carbon glycerol and pyruvate
have been oxidized by using two cascade dehydrogenases
[71] and the enzymes in the Kreb cycle [72,73], respectively.
Figure 4b presents the scheme of EFCs that can completely
oxidize carbohydrate by utilizing the cascade enzyme
pathway through the modified NAD-preferred pentose
phosphate pathway [51] or the citric acid cycle [69].
Although current EFCs have lower power densities than
DMFCs, EFCs are on its early development stage. It is
expected that further improvements of enzymatic fuel cells
in prolonging enzyme stability and enhancing power density
would enable EFCs to be competitive with DMFCs and
rechargeable batteries [9,25].

For high-power stationary and transportation applica-
tions, fuel cell technologies face more stringent requirements
in cost, power output, and durability. Figure 4c presents the
scheme of an integrated biotransformer containing the
enzyme cocktail responsible for generating high-purity
hydrogen from the carbohydrate/water slurry and PEMFCs.
A hybrid of the endothermic biotransformer and exothermic
PEMFCs would increase the overall energy utilization
efficiency and improve heat control of the PEMFC stack.
For stationary power applications, there is no strict require-
ment in the size of biotransformer so that the reaction rates
of biotransforming are not so important [8]. We envision that
local biotransformers will utilize local low-cost biomass
sugars, generate hydrogen for PEMFC stacks, and provide
electricity and hot water to local users. For the light-duty
passenger vehicles, it is vital to increase the hydrogen
generation rates by three orders of magnitude due to a small
room in vehicles [6,8]. The hydrogen-generating rates will
be increased by using combined efforts in (i) increasing
reaction temperature, (ii) increasing the rate-limiting step
enzyme loading, (iii) increasing the substrate concentration,
(iv) increasing the overall enzyme loading, (v) forming
metabolite channeling among the cascade enzymes, and
(vi) increasing the catalytic efficiency of enzymes [6,8].
Our previous analysis suggested the technological feasibility
of three orders of magnitude enhancements in reaction rates
[8]. In partial support to this prediction, power densities of
microbial fuel cells have been increased by more than one
million-folds through intensive research and development
efforts during the past 15 years [74].
4. ROADMAP AND CHALLENGES

Use of carbohydrate is a more appealing solution to the
hydrogen economy than use of methanol according to
numerous factors such as substrate cost based on energy
content, energy conversion efficiency, catalyst cost and
availability, sustainability, safety, toxicity, and applications
(Table II). Hydrogen generation and storage based on



Table II. Comparison of two hydrogen carriers—methanol versus carbohydrate.

Methanol Carbohydrate

Phase Liquid Solid powder or slurry
Source Depletable fossil fuels, made from natural gas or coal Renewable, isolated from biomass
Cost ($/GJ)* 16.8 [1] 12.9 [2]
H2 generation condition Modest high Modest
Application Hydrogen carrier Food and feed

Liquid fuel Hydrogen carrier
Precursor of chemicals Precursor of liquid biofuels

Precursor of chemicals
Precursor of materials
Electricity storage compound

Toxicity High No
Electricity generation Direct methanol fuel cell SyPaB+PEM fuel cell

Enzymatic fuel cell

*methanol, $1.00/Gal and delivered carbohydrate, $0.22/kg.
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carbohydrate mediated by SyPaB is a disruptive innovation,
which would improve a product or service in ways that
the market does not expect, typically by lowering price or
designing for a different set of consumers [75]. But there
are three major obstacles ahead: a lack of low-cost stable
enzymes as building blocks (such as parts of computers,
CPU, monitor, keyboard, mouse), high cost and labile
NAD(P) cofactors, and low reaction rates for sugar fuel
cell vehicles [25,26]. But it is not necessary to solve the
aforementioned three obstacles at the same time before the
innovation of SyPaB.

Figure 5 presents the application roadmap of hydrogen/
electricity generation mediated by SyPaB from high-end
(high-value) applications at the beginning to low-end (low-
value) applications in the future. Biohydrogenation catalyzed
by enzymes and NAD(P)H is becoming more accepted,
especially for the synthesis of chiral compounds in the
pharmaceutical industry with a market size of billions of
dollars per year [76,77]. Now we have developed a synthetic
pathway responsible for the stoichiometric reaction of
(C6H10O5)n+12NADP

++7H2O! (C6H10O5)n-1+12NADPH+
12H++6CO2(g) [51]. The NADPH yield is as high as
11.4mol NADPH per cellobiose (i.e., 95% of theoretical
yield—12NADPH per glucose unit) in a batch reaction
[51]. The complete oxidation of biomass sugars for
biohydrogenation has the lowest substrate cost ($1.35/kg
Figure 5. Application roadmap of the carbohyd
H2 added) [74], much lower than the costs of hydrogen
generated from natural gas (e.g., ~$2.7/kg H2) [78,79],
ethanol ($2.50/Gal), formic acid ($0.90/kg) [80], phosphite
($1.00/kg) [81,82], and one-NADH regeneration from glu-
cose [35,83,84]. For this application, the SyPaB is very
competitive based on substrate costs, whereas the stability
of the enzymes and coenzymes are not problematic for the
synthesis of high-value products. Furthermore, the use of
renewable carbohydrate for NAD(P)H regeneration/bio-
hydrogenation would achieve nearly zero greenhouse gas
emissions based on the whole life cycle.

The second high-end application is electricity generation
by EFCs (Figure 4b), where clients care more about the
performance, such as high energy storage density, user
safety, biodegradability, refilling or recharging rate, and so
on. It is anticipated that sugar batteries with enhanced power
density (e.g., ~5–10mW/cm2), prolonged enzyme lifetime
(e.g., several months to years), and complete oxidation of
sugars (i.e., energy density of ~500–1000Wh/kg of 20%
sugar/water slurry) would be demonstrated within several
years. Now Sony and Nokia are developing sugar batteries
for portable electronics and cellular phones, respectively.
Now the market size of rechargeable batteries for mobile
electronics is more than $10bn/year. Therefore, low-cost
EFCs based on sugars are expected to be available in the
market soon (Table III).
rate-to-hydrogen/electricity technologies.
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Table III. Comparison of different electricity generation systems frommethanol, carbohydrate, and hydrogenmade from carbohydrate.

DMFC EFC PEMFC

Fuel Methanol Carbohydrate Sugary hydrogen
Catalyst Platinum Enzymes Platinum
Catalyst cost Very high High ! Low High
Efficiency Modest Low modest High
Power density (mW/cm2 anode) Modest (~10–100) Low modest (~0.1–10) High (~500–800)
Major application Portable electronics Portable electronics Hydrogen fuel cell vehicles
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The first low-end market is local satellite hydrogen
generation stations and distributed electricity generator.
The hydrogen market size is approximately $20bn in the
USA alone [16]. For this application, we need to solve
two obstacles—stability of enzymes and use of low-cost
biomimetic coenzymes replacing costly and labile NAD
(P) cofactors—but accelerating reaction rates is not so
important because we can build very large-size bioreactors
at low costs, such as waste water treatment facilities. The
ultimate hydrogen production costs from sugars would be
as low as $1.30/kg, where carbohydrate would account
for 90–95% of production costs [26,27].

The most ambitious application is sugar fuel cell vehicles
(SFCVs) [6,8]. Four obstacles related with (i) enzymes,
(ii) coenzymes, (iii) reaction rates, and (iv) power train
system configuration and control must be solved before its
implementation. Although somany obstacles seem challeng-
ing, huge potential markets (e.g., trillions of dollars per year,
including SFCV production as well as the production
of sugars and enzymes) mean a strong motivation. It is
estimated that 1 kg of sugar through the biotransformer and
PEMFC can generate the same kinetic energy as 1.1 kg of
gasoline through internal combustion engine [2,55]. But
the operation costs for the SFCV [sugar, $0.22/kg sugar, plus
enzymes as well as coenzymes (50%, equaling the costs of
sugar)] would be less than a half of gasoline ($3.00/Gal).
Along with other potential benefits, such as the nearly net-
zero carbon emissions, national energy security, and local
job creation, SFCV would be the holy grail of the future
hydrogen economy.We envision that the SFCVwould come
true as in the movie ‘Back to the Future Part II’ eventually.

In a word, hydrogen/electricity generation from renew-
able carbohydrate mediated by SyPaB may be an out-of-
the-box to the hydrogen economy [6]. The obstacles
associated with stable enzymes, use of biomimetic coen-
zymes, and enhancement of reaction rates can be addressed
according to the current knowledge and technologies. With
regard to unstable enzymes, a number of recombinant
(hyper)-thermostable enzymes can be produced by E. coli,
including the Clostridium themocellum phosphoglucomu-
tase [40], Thermotoga martima 6PGDH [35], and fructose
bisphosphatase [41]. Currently the key recombinant
hyperthermophilic NiFe SH1 hydrogenase has been
produced in E. coli [85]. So all of the enzymes involved
in the sugar-to-hydrogen generation can be heterologously
produced by low-cost E. coli fermentation. In order to
decrease enzyme purification costs, simple and scalable
Int. J. Energy Res. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/er
protein purification approaches by adsorption/desorption
[35,86,87] or heat precipitation [27,40] have been devel-
oped. With regard to costly labile cofactors, biomimetic
NAD analogs have been used by redox enzymes
[47,48,50,88]. With regard to reaction rates, the hydrogen
generation rates have been improved by 20-fold during
the past 3 years [24] and the further enhancement is on
the way.
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